几个小创新模型,KAN组合网络(LSTM、GRU、Transformer)时间序列预测,python预测全家桶...

截止到本期,一共发了8篇关于机器学习预测全家桶Python代码的文章。参考往期文章如下:

1.终于来了!python机器学习预测全家桶

2.机器学习预测全家桶-Python,一次性搞定多/单特征输入,多/单步预测!最强模板!

3.机器学习预测全家桶-Python,新增CEEMDAN结合代码,大大提升预测精度!

4.机器学习预测全家桶-Python,新增VMD结合代码,大大提升预测精度!

5.Python机器学习预测+回归全家桶,再添数十种回归模型!这次千万别再错过了!

6.Python机器学习预测+回归全家桶,新增TCN,BiTCN,TCN-GRU,BiTCN-BiGRU等组合模型预测

7.调用最新mealpy库,实现215个优化算法优化CNN-BiLSTM-Attention,电力负荷预测

8.Transformer实现风电功率预测,python预测全家桶


今天再更新一期关于与KAN网络结合的时间序列预测代码。

一、KAN网络模型概述

KAN网络属于近期非常热门的一个模型,与传统的MLP架构截然不同,KAN网络能用更少的参数在数学、物理问题上取得更高精度。KAN其灵感来源于 Kolmogorov-Arnold 定理,这个定理的含义就是任意一个多变量连续函数都可以表现为一些单变量函数的组合。

KAN的核心特点是在网络的边缘(即权重)上拥有可学习的激活函数,而不是像传统的MLPs那样在节点(即神经元)上使用固定的激活函数。并且KAN的准确性和可解释性要比MLP好很多。

5c68281125292749b553c961729d3ba1.png

KAN的优点:

  • 1. KAN可以避免大模型的灾难性遗忘问题

  • 2. 在函数拟合、偏微分方程求解方面,KAN比MLP更准确

  • 3. KAN可以直观地可视化。KAN 提供MLP无法提供的可解释性和交互性

KAN的缺点:

  • 1.训练速度慢:因为训练一个激活函数,需要无限多的循环进行验证

  • 2. 对于更深层结构可解释性是否还存在,论文中给出的实验只是浅层的

  • 3.KAN网络在求解非线性函数等工程问题时更精确,但在时间序列预测方面,训练起来就非常慢。但是将其作为网络的一个小的改进点,还是可以的。

二、KAN网络组合模型

本期带来几个KAN网络的组合模型:LSTM-KAN、GRU-KAN、Transformer-KAN、BiLSTM-KAN

老规矩,依旧以《风电场功率预测.xlsx》为例进行介绍。数据格式如下:

afb238a9ad490050270b8a7ac0120730.png

设置网络为多特征输入,多步预测。采用前10个历史时刻的特征值预测未来2天的功率值。(当然你也可以改为其他任何你想改的,比如单特征、单步预测等,不会改的参考这篇文章:一次性搞定多/单特征输入,多/单步预测!最强模板!)

三、结果展示:

设置了不同的实验进行展示。

实验一:设置网络为多特征输入,单步预测。采用前5个历史时刻的特征值预测未来1个时刻的功率值。设置训练集测试集比例为7:3,并采用BiLSTM-KAN组合模型预测。

BiLSTM-KAN预测结果:

6ca046425a1eecdfaaf8a7facbe6b023.png

8e37a4053fcc0af86dbc972be46731c3.png

实验二设置网络为多特征输入,多步预测。采用前5个历史时刻的特征值预测未来2个时刻的功率值。设置训练集测试集比例为9:1,并采用GRU-KAN组合模型预测。

GRU-KAN预测结果:

第一步预测结果:

509e1bed70ddc11ab42cc18a55fb48c6.png

第二步预测结果:

196a18f7b9ad6307eef5390b514eb9a9.png

指标打印结果:

7e5c78f3cac325ce8cc7a67b038ba74b.png

实验三设置网络为单特征输入,单步预测。采用前5个历史时刻的特征值预测未来1个时刻的功率值。设置训练集测试集比例为7:3,并采用LSTM-KAN组合模型预测。

LSTM-KAN预测结果:

6b9cf051affbb119871eeb2c9ec353af.png

ced75c39de36643c1811365da11bfde5.png

实验四设置网络为多特征输入,多步预测。采用前10个历史时刻的特征值预测未来2个时刻的功率值。设置训练集测试集比例为7:3,并采用

Transformer -KAN 组合模型预测。

Transformer-KAN预测结果:

第一步预测结果:

88a2bccae96cd30b2fd596fe18ae067f.png

第二步预测结果:

a6b715e473d69571f1ae6f52e110333f.png

b04f3dd4aa2ed2f57d7466f94f8abd7c.png

已将本文代码更新至python预测全家桶。

后续会继续更新一些其他模型……敬请期待!

机器学习python全家桶代码获取

https://mbd.pub/o/bread/ZZqXmpty

识别此二维码也可跳转全家桶

后续有更新直接进入此链接,即可下载最新的!

cac42cc5bce062cc6afe2208ea801430.png

或点击下方阅读原文获取此全家桶。



全家桶pip包推荐版如下:

tensorflow~=2.15.0
pandas~=2.2.0
openpyxl~=3.1.2
matplotlib~=3.8.2
numpy~=1.26.3
keras~=2.15.0
mplcyberpunk~=0.7.1
scikit-learn~=1.4.0
scipy~=1.12.0
qbstyles~=0.1.4
prettytable~=3.9.0
vmdpy~=0.2
xgboost~=2.0.3
mealpy~=3.0.1
torch~=2.3.1

获取更多代码:

08131ff4975f7e4febbb47339e1c0c26.png

或者复制链接跳转:
https://docs.qq.com/sheet/DU3NjYkF5TWdFUnpu

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/713545.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

中国城市建设统计年鉴(1978-2022年)

数据年份:1978-2022 数据格式:excel、pdf 数据内容:以2022年为例,《中国城市建设统计年鉴—2022》根据各省、自治区和直辖市建设行政主管部门上报的2022年及历年城市建设统计数据编辑。 共分13个部分,包括城市市政公用…

Java课程设计:基于swing + mysql的酒店管理系统

文章目录 一、项目介绍二、项目展示三、源码展示四、源码获取 一、项目介绍 项目功能 1、散客开单:完成散客的开单,可一次最多开5间相同类型的房间。 2、团体开单:完成团体的开单,开放数量没有限制,可同时开不同类型…

Java阻塞队列:ArrayBlockingQueue

Java阻塞队列:ArrayBlockingQueue ArrayBlockingQueue是Java中的一个阻塞队列(Blocking Queue)实现,它是线程安全的,并且基于数组实现。ArrayBlockingQueue常用于生产者-消费者模型,在这种模型中&#xff…

北京人工智能数据运营平台发布,并开源大规模数据集

6月14日,AI行业顶级盛会2024北京智源大会正式拉开帷幕。作为大会的重要组成部分,智源大会“人工智能数据新基建”论坛同步召开。本论坛由北京智源人工智能研究院主办,中国互联网协会人工智能工委会和中国移动研究院承办。本次论坛邀请到来自中…

2-5 基于matlab的信号的希尔伯特-黄变换

基于matlab的信号的希尔伯特-黄变换,IMF分解,对IMF进行Hilbert处理,绘制二维/三维时-频图,时间-能量图(瞬时能量谱) ,频率-能量图(希尔伯特谱)。程序已调通,可直接运行。 2-5 希尔伯…

java Springboot网上音乐商城(源码+sql+论文)

1.1 研究目的和意义 随着市场经济发展,尤其是我国加入WTO ,融入经济全球化潮流,已进入国内外市场经济发展新时期,音乐与市场联系越来越紧密,我国音乐和网上业务也进入新历史发展阶段。为了更好地服务于市场&#xff0…

11.泛型、trait和生命周期(上)

标题 一、泛型数据的引入二、改写为泛型函数三、结构体/枚举中的泛型定义四、方法定义中的泛型 一、泛型数据的引入 下面是两个函数,分别用来取得整型和符号型vector中的最大值 use std::fs::File;fn get_max_float_value_from_vector(src: &[f64]) -> f64…

.net8 blazor auto模式很爽(五)读取sqlite并显示(2)

在BlazorApp1增加文件夹data&#xff0c;里面增加类dbcont using SharedLibrary.Models; using System.Collections.Generic; using Microsoft.EntityFrameworkCore;namespace BlazorApp1.data {public class dbcont : DbContext{public dbcont(DbContextOptions<dbcont>…

Python进阶:从函数到文件的编程艺术!!!

第二章&#xff1a;Python进阶 模块概述 函数是一段可重复使用的代码块&#xff0c;它接受输入参数并返回一个结果。函数可以用于执行特定的任务、计算结果、修改数据等&#xff0c;使得代码更具模块化和可重用性。 模块是一组相关函数、类和变量的集合&#xff0c;它们被封…

vs+qt5.0 使用poppler 操作库

Poppler 是一个用来生成 PDF 的C类库&#xff0c;从xpdf 继承而来。vs编译库如下&#xff1a; vs中只需要添加依赖库即可 头文件&#xff1a;

2.2 抽头

目录 为什么要抽头 什么是抽头 接入系数 怎么抽头 信号源端抽头 负载端抽头 例题分析 要点总结 为什么要抽头 阻抗转换&#xff0c;使信号源内阻Rs与负载电阻RL变得很大&#xff0c;分流小&#xff0c;再使用并联方式。 什么是抽头 接入系数 电容越大&#xff0c;分压越…

初识PHP

一、格式 每行以分号结尾 <?phpecho hello; ?>二、echo函数和print函数 作用&#xff1a;两个函数都是输出内容到页面中&#xff0c;多用于代码调试。 <?php echo "<h1 styletext-align: center;>test</h1>"; print "<h1 stylet…

使用python绘制三维曲线图

使用python绘制三维曲线图 三维曲线图定义特点 效果代码 三维曲线图 三维曲线图&#xff08;3D曲线图&#xff09;是一种用于可视化三维数据的图表&#xff0c;它展示了数据在三个维度&#xff08;X、Y、Z&#xff09;上的变化。 定义 三维曲线图通过在三维坐标系中绘制曲线…

AI大模型技术揭秘-参数,Token,上下文和温度

深入理解 AI 大模型:参数、Token、上下文窗口、上下文长度和温度 人工智能技术的飞速发展使AI大模型大放异彩,其中涉及的“参数”、“Token”、“上下文窗口”、“上下文长度”及“温度”等专业术语备受瞩目。这些术语背后究竟蕴含何意?它们如何影响AI大模型的性能?一起揭开…

htb_Freelancer

端口扫描 80 88 389 445 扫描ldap协议相关漏洞&#xff0c;没有发现 扫描子域名&#xff0c;加入/etc/hosts&#xff08;后面发现没用&#xff09; 枚举域用户 目录扫描&#xff0c;发现一个/admin目录 访问后发现要账号密码 访问80端口&#xff0c;注册一个freelancer用…

关于二分法的理解(以JS为例)

算法介绍 基本概念 二分查找算法&#xff0c;又称折半查找算法&#xff0c;是一种在有序数组中查找特定元素的高效方法。它的核心思想是将数组分成两半&#xff0c;然后根据目标值与中间元素的比较结果来决定是继续在左半部分还是右半部分进行搜索。 工作原理 初始化&#…

Vue3+Vite报错:vite忽略.vue扩展名 Failed to resolve import ..... Does the file exist?

Vue3Vite报错&#xff1a;vite忽略.vue扩展名 Failed to resolve import … Does the file exist? 先看报错&#xff1a; 分析原因 原因是我们没有写后缀名 建议你在你的vite.config.js中加上如下配置 import { defineConfig } from "vite"; import vue from &qu…

股指期货功能

其金融期货的本质&#xff0c;决定了股指期货具有以下几方面特点&#xff1a; &#xff08;1&#xff09;交割方式为现金交割&#xff1b; &#xff08;2&#xff09;股指期货的持有成本较低&#xff1b; &#xff08;3&#xff09;股指期货的保证金率较低&#xff0c;杠杆性…

R 初级教程之一

IT的发展目前已经相当的内卷&#xff0c;到处都在说24年是将来4年最难的一年&#xff01;确实是&#xff0c;眼下各大厂商都在疯狂的裁员砍掉不营利的业务&#xff0c;收紧业务&#xff0c;不再盲目的扩张。小公司更是水深火热&#xff0c;无以言表。近期有个医院联系让使用R给…

Zombie Animations Set

僵尸动画合集,包括成对攻击/抓取、各种移动方式、爬行、击中反应、死亡动画等。 生产说明 动画总数:99(包括22个位置变化) 配对动画:36 攻击次数:6次 爬网:9 命中反应:6 空转:14 行程2 跑步次数:9次 短跑:2 匝数:3 步行次数:12次 免责声明 任何游戏玩法蓝图都不包…