flink源码系列:RPC通信

这里写目录标题

  • 1. 本节课目的
  • 2.开始本节内容
    • 2.1.RPC概念
    • 3.2.大数据组件常见的RPC实现技术
    • 3.3.Pekko(Akka)
      • 3.3.1. Akka、Pekko基本概念
      • 3.3.2.Pekko Demo事例
        • 3.3.2.1.PekkoData 类
        • 3.3.2.2.PekkoRpcReceiverActor类
        • 3.3.2.3.PekkoRpcSenderActor 类
        • 3.3.2.4. Demo 类
    • 3.4.Flink RPC通信
      • 3.4.1Flink RPC整体架构
      • 3.4.2.RpcGateway
      • 3.4.3.RpcEndpoint
      • 3.4.4.RpcService
      • 3.3.5.RpcServer
      • 3.3.6.PekkoRpcActor
      • 3.3.7.场景引导方式查看源码
    • 3.5.TaskExecutor向ResourceManager注册 debug

https://qwr78tzaus4.feishu.cn/drive/folder/Geumf5oe7lKrnTdAZLzcQn9Bnqc
https://qwr78tzaus4.feishu.cn/docx/K1fsdEbrgo6C0lxYktkc7FOEnQb
https://www.bilibili.com/video/BV16z421m741/?p=2&vd_source=4fd37f941817afccac1a77e31fec6be7

1. 本节课目的

核心点
1.精通Flink RPC框架整体设计
2.彻底理解Flink RPC底层是如何通信的
用到的知识点
1.ResourceManager:主要负责Flink集群中的计算资源,其中计算资源主要来自TaskManager注册。
2.TaskManager(TaskExecutor):TaskManager负责向整个集群提供Slot计算资源。TaskManager会调用registerTaskExecutor()方法向ResourceManager注册

2.开始本节内容

2.1.RPC概念

RPC,即远程过程调用(Remote Procedure Call),是一种通过网络从远程计算机程序上请求服务的技术,而无需了解底层网络技术的协议。在RPC中,客户机和服务器位于不同的机器上,客户端通过网络调用在服务器端运行的过程,并将结果发送回客户机。这种技术允许程序像调用本地过程一样调用远程过程,使得跨平台、跨机器的服务调用成为可能。
1.两个进程间的相互调用
2.集群中不同节点服务的通信

3.2.大数据组件常见的RPC实现技术

序号生态圈技术RPC实现
1HadoopNIO
2SparkSpark1(Akka),Spark2(Netty)
3FlinkAkka+Netty(Pekko+Netty)

3.3.Pekko(Akka)

3.3.1. Akka、Pekko基本概念

Flink1.18版本内部RPC通信封装用的是Apache Pekko。Apache Pekko是Akka 2.6.x的一个分支。为什么会改因为Akka将来Apache许可证更改为Business Source License (BSL) v1.1,该协议不是开源的。
Akka、Pekko 用于构建高并发、分布式、可容错、事件驱动的开发库。
1、提供基于异步非阻塞、高性能的事件驱动编程模型
2、轻量级的事件处理(每GB堆内存几百万Actor)
3、使用Akka可以在单机上构建高并发程序,也可以在网络中构建分布式程序。
注意:Akka是基于Actor模型的并发框架,每个Actor的实例在运行时只占用非常少的资源,大约只有300字节。这意味着在1G的内存中可以容纳接近300万个Actor,这使得Akka在处理大量并发请求时能够保持高效的内存使用。
1、ActorSystem 是管理 Actor 生命周期的组件,Actor 是负责进行通信的组件
2、每个 Actor 都有一个 MailBox,别的 Actor 发送给它的消息都首先储存在 MailBox 中,通过这种方式可以实现异步通信。
3、每个 Actor 是单线程的处理方式,不断的从 MailBox 拉取消息执行处理,所以对于 Actor 的消息处理,不适合调用会阻塞的处理方法。
4、Actor 可以改变他自身的状态,可以接收消息,也可以发送消息,还可以生成新的 Actor
5、每一个 ActorSystem 和 Actor都在启动的时候会给定一个 name,如果要从 ActorSystem 中,获取一个 Actor,则通过以下的方式来进行 Actor 的
获取:pekko.tcp://flink@localhost:6123/user/rpc/resourcemanager_* 来进行定位
6、如果一个 Actor 要和另外一个 Actor 进行通信,则必须先获取对方 Actor 的 ActorRef 对象,然后通过该对象发送消息即可。
7、通过 tell 发送异步消息,不接收响应,通过 ask 发送异步消息,得到 Future 返回,通过异步回到返回处理结果。
8.如果构建actor进行通信,Pekko版本中必须继承AbstractActor 实现createReceive()方法

3.3.2.Pekko Demo事例

3.3.2.1.PekkoData 类

1.定义了通信的类型信息也就是PekkoData
2.内部声明一个 字符串类型的info

package com.source.pekko;

import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;

@Data
@AllArgsConstructor
@NoArgsConstructor
public class PekkoData {
    private String info;
}
3.3.2.2.PekkoRpcReceiverActor类

1.PekkoRpcReceiverActor接收Actor类继承了AbstractActor
2.也就是说该类可以进行接收发送消息
3.接收消息会进入到createReceive
4.根据消息类型匹配进入到handleMessage
5.获取发送者、自身的ActorRef
6.打印信息并向发送者回复消息

package com.source.pekko;

import org.apache.pekko.actor.AbstractActor;
import org.apache.pekko.actor.ActorRef;
import org.apache.pekko.japi.pf.ReceiveBuilder;

/**
 * 继承AbstractActor定义自己的actor
 * Actor可以发送和接收消息
 */
public class PekkoRpcReceiverActor extends AbstractActor {
    /**
     * 实现接收消息
     * @return
     */
    @Override
    public Receive createReceive() {
        return ReceiveBuilder.create()
                /**接收到PekkoData消息交给handleMessage处理
                 * flink PekkoRpcActor 155行也是这样处理的
                 */
                .match(PekkoData.class, this::handleMessage)
                .build();
    }

    /**
     * 处理具体消息
     * @param message
     */
    private void handleMessage(final PekkoData message) {
        /** 获取发送者,发送者对应的就是actorRef */
        ActorRef sender = getSender();
        ActorRef self = getSelf();
        /** 打印 */
        System.out.println("PekkoRpcReceiverActor类收到:" +sender + ":发送者=>" + message.getInfo());
        /** 回复消息 向发送者sender 回复word 的消息 回复者是当前actorRef*/
        /** 4、Actor 可以改变他自身的状态,可以接收消息,也可以发送消息,还可以生成新的 Actor  */
        sender.tell(new PekkoData("word"),self);

    }
}
3.3.2.3.PekkoRpcSenderActor 类

1.PekkoRpcSenderActor 发送Actor类继承了AbstractActor
2.也就是说该类可以进行接收发送消息
3.接收消息会进入到createReceive
4.根据消息类型匹配进入到handleMessage
5.获取发送者的ActorRef
6.打印信息

package com.source.pekko;

import org.apache.pekko.actor.AbstractActor;
import org.apache.pekko.actor.ActorRef;
import org.apache.pekko.japi.pf.ReceiveBuilder;

/**
 * 继承AbstractActor定义自己的actor
 * Actor可以发送和接收消息
 */
public class PekkoRpcSenderActor extends AbstractActor {
    /**
     * 实现接收消息
     * @return
     */
    @Override
    public Receive createReceive() {
        return ReceiveBuilder.create()
                /**接收到PekkoData消息交给handleMessage处理
                 * flink PekkoRpcActor 155行也是这样处理的
                 */
                .match(PekkoData.class, this::handleMessage)
                .build();
    }


    private void handleMessage(final PekkoData message) {
        /** 获取发送者,发送者对应的就是actorRef */
        ActorRef sender = getSender();
        /** 打印 */
        System.out.println("PekkoRpcSenderActor类收到:" +sender + ":发送者=>" + message.getInfo());

    }
}
3.3.2.4. Demo 类

1.创建ActorSystem,名字为flink
2.获取PekkoRpcReceiverActor的ActorRef这样就可以进行发送消息了、接收消息了
3.获取PekkoRpcSenderActor的ActorRef这样就可以进行发送消息了、接收消息了
4.通过PekkoRpcSenderActor的actorRef 向PekkoRpcReceiverActor发送消息
5.PekkoRpcReceiverActor类中的createReceive接收到消息后会匹配类型转入handleMessage
6.打印信息,然后通过自身actorRef 向PekkoRpcSenderActor回复消息
7.PekkoRpcSenderActor的createReceive方法接收到后转入handleMessage
8.打印回复信息。
9结束程序。

package com.source.pekko;

import org.apache.pekko.actor.ActorRef;
import org.apache.pekko.actor.ActorSystem;
import org.apache.pekko.actor.Props;

public class Demo {
    public static void main(String[] args) {
        /**创建actorSystem*/
        ActorSystem actorSystem = ActorSystem.create("flink");
        /**构建PekkoRpcActor的ActorRef*/
        ActorRef pekkoRpcRef = actorSystem.actorOf(Props.create(PekkoRpcReceiverActor.class), "PekkoRpcReceiverActor");
        /**构建PekkoRpcSenderActor的ActorRef*/
        ActorRef pekkoRpcSenderRef = actorSystem.actorOf(Props.create(PekkoRpcSenderActor.class), "PekkoRpcSenderActor");
        /** pekkoRpcSenderActor作为发送者 向PekkoRpcActor发送 hello*/
        pekkoRpcRef.tell(new PekkoData("hello"),pekkoRpcSenderRef);
    }
}

运行结果
[图片]

3.4.Flink RPC通信

3.4.1Flink RPC整体架构

Flink RPC框架设计相对比较复杂,底层基于Pekko构建的通信系统,Java 动态代理构建RpcGateway接口的代理类
Flink RPC UML图
[图片]

如上图 Flink RPC UML图
1.RpcGateway接口Flink RPC底层通信用到的动态代理,动态代理中使用的目标类实现的接口最终都是RpcGateway(也就是说动态代理创建的接口最上层都是RpcGateway)
2.RpcEndpoint消息通信组件,底层都有的通信实体都要继承RpcEndpoint
3.FenceRpcEndpoint类是内部会有一个fenceToken发送消息的时候两个 token一样的时候才能发成功,FencePekkoInvocationHandler、FenceRpcGateway也一样
4.RpcEndpoint 内部使用到了RpcService、RpcService
5.RpcService就是用来服务Flink RPC通信的服务类,内部会创建RpcEndpoint的自身代理,获取远程代理。RpcService实现类是PekkoRpcService
6.RpcService 在具体通信类构建对象的时候super父类构造器也就是RpcEndpoint类的时候会初始化RpcServer代表自身代理。
7.PekkoInvocationHandler、FencePekkoInvocationHandler实现了java InvocationHandler接口,也就是说他们里面肯定有实现的invoke方法
8.Dispatcher及其子类、ResourceManager及其子类、JobMaster最终都继承了RpcEndpoint,也就是说他们都具备了通信的特质

3.4.2.RpcGateway

Rpc网关,用于远程调用的代理接接口,RPC通信的接口都继承RpcGateway,java动态代理类最终创建。
Proxy类:这个类提供了创建动态代理类和实例的静态方法。

public static Object newProxyInstance(ClassLoader loader,                                       Class<?>[] interfaces,                                       InvocationHandler h)  
interfaces=>实现了RpcGateWay的接口
如:ResourceManagerGatewayJobMasterGatewayTaskExecutorGateway

3.4.3.RpcEndpoint

1)RpcEndpoint抽象类中定义了RPC组件的基本实现,所有需要实现RPC服务的组件都会继承RpcEndpoint,
RpcEndpoint内部包含了endpointId 用来标识当前RPC节点的唯一标识,RpcEndpoint借助RpcService启动RpcServer。
2)FencedRpcEndpoint继承RpcEndpoint,内部增加了fencingToken字段,实现了FencedRpcEndpoint的节点都会有一个fencingToken,当远程RPC调用时,会比较访问者和被访问者的fencingToken是否一致,一致了才会进行后续操作。
3)FencedRpcEndpoint实现类有ResourceManager、JobMaster、TaskExecutor,RpcEndpoint的实现类有TaskExecutor

3.4.4.RpcService

创建时间ClusterEntrypoint 开始启动集群初始化的时候

private RpcService commonRpcService;
ClusterEntrypoint .runCluster ->
initializeServices ->
 commonRpcService =
                    RpcUtils.createRemoteRpcService(
                            rpcSystem,
                            configuration,
                            configuration.get(JobManagerOptions.ADDRESS),
                            getRPCPortRange(configuration),
                            configuration.get(JobManagerOptions.BIND_HOST),
                            configuration.getOptional(JobManagerOptions.RPC_BIND_PORT));

内部提供了RpcServer的创建和启动方法,启动RpcServer(startServer)过程中,通过RpcEndpoint地址创建Akka actor实例,并基于Actor实例构建RpcServer接口的动态代理类
connect方法:连接到所提供地址下的远程rpc服务器。返回一个rpc网关(代理对象),该网关可以用于与rpc服务器通信

3.3.5.RpcServer

创建时间RpcEndpoint 构建的时候创建
RpcServer接口通过PekkoInvocationHandler动态代理类实现,所有远程获本地的执行请求,最终都会转换到PekkoInvocationHandler代理类中执行,也就是InvocationHandler的invoke方法
public ResourceManagersuper() ->
protected FencedRpcEndpoint super() ->
RpcEndpoint -> this.rpcServer = rpcService.startServer(this);
核心点:所有RpcEndpoint启动的时候调用start()方法,最终都会流转到RpcEndpoint的onStart()方法
原因如下:

ClusterEntrypoint.dispatcherResourceManagerComponentFactory.create() ->
DefaultDispatcherResourceManagerComponentFactory.create ->
resourceManagerService.start() ->
ResourceManagerServiceImpl.start() ->
StandaloneLeaderElection.startLeaderElection->
ResourceManagerServiceImpl.grantLeadership->
startNewLeaderResourceManager()->
startResourceManagerIfIsLeader->resourceManager.start();
RpcEndpoint.start ->
    public void start() {
        rpcEndpoint.tell(ControlMessages.START, ActorRef.noSender());
    }
   ===========================================
PekkoRpcActor.createReceive() ->
handleControlMessage() ->
StoppedState.start() ->
RpcEndpoint.internalCallOnStart()->
onStart()

3.3.6.PekkoRpcActor

继承了AbstractActor,实现了createReceive(),也就是说Flink RPC 所有通信都会被createReceive
之后根据消息类型流转到对应的handleMessage(),消息类型有RemoteHandshakeMessage握手消息、ControlMessages 控制类消息比如start,其他消息(RpcInvocation)
暂时无法在飞书文档外展示此内容

3.3.7.场景引导方式查看源码

假设设计一个TaskExecutor进程 向ResourceManager进程注册,如何设?
1.TaskExecutor、ResourceManager要是可以进行通信的(RpcEndpoint)
1.TaskManager要能获取到ResourceManager的代理对象(TaskExecutorGateway、ResourceManagerGateway)
2.TaskManager获取到代理对象之后要知道调用ResourceManager的那个方法进行注册(ResourceManagerGateway.registerTaskExecutor)
3.要实现有能连接ResourceManager进程的通信服务(RpcService)
4.建立通信连接后要有能处理消息的公共类(PekkoRpcActor)
5.满足以上条件了,就相当于TaskManager、ResourceManager本身就是一个可以通信的进程,本地通信 自己与自己通信(RpcServer)
基于上面的设计,我们从Flink代码中可以找到对应的实现类、接口

3.5.TaskExecutor向ResourceManager注册 debug

TaskExecutor创建对象启动的时候会触发 onStart方法
Flink 内部所有的RpcEndpoint 实现(TaskExecutor,ResourceManager、JobMaster)等第一次启动都会触发onstart方法的执行,这是pekko的内部机制
1.进入到TaskExecutor的onStart方法后,调用startResourceManagerServices启动相关的服务
[图片]

startResourceManagerServices方法内部做了如下操作
2.resourceManagerLeaderRetriever监听服务中构建一个ResourceManagerLeaderListener会监听ResourceManager Leader,该类中的notifyLeaderAddress方法会在第一次启动、ResourceManager Leader的时候触发
3.启动taskSlotTable(后面章节进行分析)
4.启动jobLeaderService(后面章节进行分析)

[图片]

4.notifyLeaderAddress方法会在第一次启动、ResourceManager Leader的时候触发,直接进去方法内部
[图片]

5.获取ResourceManager地址
6.reconnectToResourceManager真正向ResouceManager注册的方法
[图片]

7.关闭历史已经连接的ResourceManager
8.启动注册超时时间
9.试图连接ResourceManager(内部会调用connectToResourceManager)
[图片]

10.方法内部调用继续下一步
[图片]

11.TaskExecutorRegistration是TaskExecutor在注册到ResourceManager时提供的信息
12.TaskExecutorToResourceManagerConnection维护TaskExecutor与ResourceManager的连接
13.start真正连接注册的方法

[图片]

14.检查状态
15.createNewRegistration()注册成功、注册失败会回调方法
16.newRegistration.startRegistration()开始注册
[图片]

17.调用RpcService.connect(内部就会用到java动态代理)
[图片]

18.调用connectInternal方法创建代理类
19.FencedPekkoInvocationHandler刚好是实现了InvocationHandler
[图片]

20.调用ask方法进行握手,保证ResourceManager能正常通信
[图片]

21.Proxy.newProxyInstance创建代理实现
[图片]

22.创建完代理类会通过异步编程调用register同时代理对象作为参数
[图片]

23.invokeRegistration真正触发调用的方法进入实现类看
[图片]

24.实现类中的invokeRegistration方法内部调用了resourceManager.registerTaskExecutor方法,此时还没有发送到ResourceManager,方法会流转到PekkoRpcActorl类中。
[图片]

25.消息会跳转到PekkoInvocationHandler类的invoke方法
26.判断本地消息还是远程消息,因为ResourceManager是远程消息,所以会调用invokeRpc
[图片]

[图片]

27.将方法参数等封装成RpcInvocation,然后调用Pekko底层的ask发送消息
28.消息会被到PekkoRpcActor类中的方法所接收
[图片]
[图片]

在这里插入图片描述

29.PekkoRpcActor类中createReceive方法接收到数据,流转到handleMessage方法中

[图片]

30.handleMessage方法中会解析出来RpcInvocation获取到方法、参数、参数类型
31.通过java反射机制调用method.invoke 传入参数最终向目标类发送消息
[图片]

32.最后进入到ResourceManager.registerTaskExecutor方法

[图片]

如愿以偿进入最终我们预想的方法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/708751.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

618全面开战,抖音电商头部品牌罗拉密码突然“不干”了?

前言&#xff1a; 随着618电商大战的硝烟渐浓&#xff0c;各大电商平台纷纷摩拳擦掌&#xff0c;准备在这场年度购物盛宴中大展拳脚。然而&#xff0c;在这热闹非凡的氛围中&#xff0c;一个熟悉的名字却显得格外低调——罗拉密码。作为抖音电商领域的头部品牌&#xff0c;罗拉…

Git代码冲突原理与三路合并算法

Git代码冲突原理 Git合并文件是以行为单位进行一行一行合并的&#xff0c;但是有些时候并不是两行内容不一样Git就会报冲突&#xff0c;这是因为Git会帮助我们进行分析得出哪个结果是我们所期望的最终结果。而这个分析依据就是三路合并算法。当然&#xff0c;三路合并算法并不…

BetterZip 5软件安装包下载+安装教程

BetterZip是一款功能强大的Mac解/压缩软件&#xff0c;可以满足用户对文件压缩、解压、加密和保护等方面的需求。以下是关于BetterZip软件的主要功能、特点和使用方法的详细介绍&#xff0c;以及对其用户友好度、稳定性和安全性的评价。 安 装 包 获 取 地 址: BetterZip 5-安…

Unity引擎在UI上渲染粒子播放

大家好&#xff0c;我是阿赵。   在UI上面显示粒子特效&#xff0c;如果把粒子系统直接拖到Canvas里面&#xff0c;会存在很多问题&#xff0c;比如层级问题、裁剪问题等。这里分享一种用MaskableGraphic和UIVertex来显示粒子特效的方法。 一、 MaskableGraphic和UIVertex简…

使用Python和Matplotlib绘制复杂数学函数图像

本文介绍了如何使用Python编程语言和Matplotlib库来绘制复杂的数学函数图像。通过引入NumPy库的数学函数,我们可以处理包括指数函数在内的各种复杂表达式。本文详细讲解了如何设置中文字体以确保在图像中正确显示中文标题和标签,并提供了一个完整的代码示例,用户可以通过输入…

【Redis进阶】RDB持久化策略

1. 浅谈持久化 持久化&#xff1a;能够在重启主机/进程的时候&#xff0c;将数据从硬盘中恢复到内存的特性。 持久化相信大家都是不陌生的&#xff0c;毕竟MySQL中事务ACID四大特性中就包含持续性这样的特点&#xff0c;所谓持久化&#xff0c;本质上就是将数据保存在硬盘上&a…

Sping源码(九)—— Bean的初始化(非懒加载)— lookupMethod标签

序言 在继续深入Spring的对象创建流程之前&#xff0c;这篇文章先简单介绍一下lookupMethod标签的用法及作用。 准备的xml 自定义名为methodOverride.xml的配置文件。 <?xml version"1.0" encoding"UTF-8"?> <beans xmlns"http://www.s…

【星海随笔】云解决方案学习日志篇(三) 工作原理篇

Filebeat工作原理 Filebeat 是使用 Golang 实现的轻量型日志采集器,也是 Elasticsearch stack 里面的一员。本质上是一个 agent ,可以安装在各个节点上,根据配置读取对应位置的日志,并上报到相应的地方去。 使用了背压敏感协议,因此不会使管道过载。当Logstash数据处理繁忙时,…

张艺兴step新专开启自由驾驶新纪元

张艺兴《Step》新专&#xff0c;开启自由驾驶新纪元&#xff01;当音乐与驾驶相遇&#xff0c;会碰撞出怎样的火花&#xff1f;当实力派艺人张艺兴遇上全新英文专辑《Step》&#xff0c;便为我们解锁了一种前所未有的出行体验&#xff01;这不仅仅是一张音乐专辑&#xff0c;更…

南方cass专业测绘软件下载,南方cass功能强大的cad辅助测绘软件获取!

在测绘领域&#xff0c;南方CASS测绘软件无疑是一颗璀璨的明星&#xff0c;被誉为“全能选手”。这款软件在功能方面表现出了令人赞叹的多样性和专业性&#xff0c;为测绘工作提供了极大的便利。 ​ 首先&#xff0c;南方CASS测绘软件具备强大的数据兼容性&#xff0c;支持多种…

万相台的功能是什么?如何使用万相台?

1.特点&#xff1a; 万相台是一个智能渠道&#xff0c;可控性弱&#xff0c;高转化&#xff0c;人群&关键词是黑盒&#xff1b; 2.场景多&#xff1a; 有拉新快、活动加速、上新快、货品加速、活动加速、多目标直投、全站推等&#xff1b; 3.扣费逻辑&#xff1a;cpc付…

【WEB前端2024】3D智体编程:乔布斯3D纪念馆-第41课-动态添加3D对象

【WEB前端2024】3D智体编程&#xff1a;乔布斯3D纪念馆-第41课-动态添加3D对象 使用dtns.network德塔世界&#xff08;开源的智体世界引擎&#xff09;&#xff0c;策划和设计《乔布斯超大型的开源3D纪念馆》的系列教程。dtns.network是一款主要由JavaScript编写的智体世界引擎…

填报志愿选大学专业,文科生如何选专业?

读文科的同学接触的专业知识相对广泛&#xff0c;往往被认为是“万金油”&#xff0c;他们仿佛什么都能做&#xff0c;但是和专业技能类知识不同&#xff0c;缺乏技术支持&#xff0c;从而使得文科专业的就业方向和前景远远比不上理科专业那么明朗&#xff0c;对于众多文科生而…

机器学习:回顾总结

学了什么 进阶内容 接下来如何学习 找个项目自己练习多读前沿paper 学员分布

【linux网络(三)】HTTP协议详解

&#x1f493;博主CSDN主页:杭电码农-NEO&#x1f493;   ⏩专栏分类:Linux从入门到精通⏪   &#x1f69a;代码仓库:NEO的学习日记&#x1f69a;   &#x1f339;关注我&#x1faf5;带你学更多操作系统知识   &#x1f51d;&#x1f51d; Linux网络 1. 前言2. 序列化和…

使用QT绘制简单的动态数据折线图

两个核心类时QChart和QLineSeries 下面这个示例代码中&#xff0c;定时器每隔一段时间将曲线图中的数据点向右移动 一个单位&#xff0c;同时调整横坐标轴的范围&#xff0c;实现了一次滚动对应移动一个数据点的效果。 QLineSeries最多容纳40961024个点 #include <QtWidg…

boot整合solr

换了新项目组&#xff0c;技术相对老些&#xff0c;于是用boot框架简单记录下&#xff01; 安装 下载路径&#xff1a;https://solr.apache.org/downloads.html Windows环境 下载solr-8.2.0.zip包并解压缩&#xff0c;以管理员身份打开cmd&#xff0c;执行 solr cmd 命令启…

【开源项目】重庆智慧城市案例~实景三维数字孪生城市CIM/BIM

飞渡科技数字孪生重庆管理平台&#xff0c;以实景三维平台为支撑&#xff0c;以城市数据库对接为核心&#xff0c;利用数字孪生技术&#xff0c;结合云计算、物联网IOT等技术&#xff0c;对接城市规划、智能交通、和公共安全等系统。 利用平台强大的国产自研渲染引擎&#xff0…

你的职业规划就是面向贫穷的规划

如果你觉得作者的文章还有点用,请记得点赞 + 关注 说一个扎心的事实,就是我们绝大多数人的职业规划基本上都是错误的,都是面向贫穷的规划。 因为绝大多数人的职业规划都是打工人的职业规划,这种规划除了很少部分人最终能成为企业高管,实现层级跃迁外,绝大多数人在大多数…

AI大模型探索之路-实战篇:智能化IT领域搜索引擎之知乎网站数据获取(初步实践)

系列篇章&#x1f4a5; No.文章1AI大模型探索之路-实战篇&#xff1a;智能化IT领域搜索引擎的构建与初步实践2AI大模型探索之路-实战篇&#xff1a;智能化IT领域搜索引擎之GLM-4大模型技术的实践探索3AI大模型探索之路-实战篇&#xff1a;智能化IT领域搜索引擎之知乎网站数据获…