AIRNet模型使用与代码分析(All-In-One Image Restoration Network)

AIRNet提出了一种较为简易的pipeline,以单一网络结构应对多种任务需求(不同类型,不同程度)。但在效果上看,ALL-In-One是不如One-By-One的,且本文方法的亮点是batch内选择patch进行对比学习。在与sota对比上,仅是Denoise任务精度占优,在Derain与Dehaze任务上,效果不如One-By-One的MPRNet方法。本博客对AIRNet的关键结构实现,loss实现,data_patch实现进行深入分析,并对模型进行推理使用。

其论文的详细可以阅读:https://blog.csdn.net/a486259/article/details/139559389?spm=1001.2014.3001.5501

项目地址:https://blog.csdn.net/a486259/article/details/139559389?spm=1001.2014.3001.5501

项目依赖:torch、mmcv-full
安装mmcv-full时,需要注意torch所对应的cuda版本,要与系统中的cuda版本一致。

1、模型结构

AirNet的网络结构如下所示,输入图像x交由CBDE提取到嵌入空间z,z与x输入到DGRN模块的DGG block中逐步优化,最终输出预测结果。
在这里插入图片描述
模型代码在net\model.py

from torch import nn

from net.encoder import CBDE
from net.DGRN import DGRN


class AirNet(nn.Module):
    def __init__(self, opt):
        super(AirNet, self).__init__()
        # Encoder
        self.E = CBDE(opt)  #编码特征值

        # Restorer
        self.R = DGRN(opt) #特征解码


    def forward(self, x_query, x_key):
        if self.training:
            fea, logits, labels, inter = self.E(x_query, x_key)

            restored = self.R(x_query, inter)

            return restored, logits, labels
        else:
            fea, inter = self.E(x_query, x_query)

            restored = self.R(x_query, inter)

            return restored

1.1 CBDE模块

CBDE模块的功能是在模块内进行对比学习,核心是MoCo. Moco论文地址:https://arxiv.org/pdf/1911.05722

class CBDE(nn.Module):
    def __init__(self, opt):
        super(CBDE, self).__init__()

        dim = 256

        # Encoder
        self.E = MoCo(base_encoder=ResEncoder, dim=dim, K=opt.batch_size * dim)

    def forward(self, x_query, x_key):
        if self.training:
            # degradation-aware represenetion learning
            fea, logits, labels, inter = self.E(x_query, x_key)

            return fea, logits, labels, inter
        else:
            # degradation-aware represenetion learning
            fea, inter = self.E(x_query, x_query)
            return fea, inter

ResEncoder所对应的网络结构如下所示
在这里插入图片描述

在AIRNet中的CBDE模块里的MoCo模块的关键代码如下,其在内部自行完成了正负样本的分配,最终输出logits, labels用于计算对比损失的loss。但其所优化的模块实际上是ResEncoder。MoCo模块只是在训练阶段起作用,在推理阶段是不起作用的。

class MoCo(nn.Module):
    def forward(self, im_q, im_k):
        """
        Input:
            im_q: a batch of query images
            im_k: a batch of key images
        Output:
            logits, targets
        """
        if self.training:
            # compute query features
            embedding, q, inter = self.encoder_q(im_q)  # queries: NxC
            q = nn.functional.normalize(q, dim=1)

            # compute key features
            with torch.no_grad():  # no gradient to keys
                self._momentum_update_key_encoder()  # update the key encoder

                _, k, _ = self.encoder_k(im_k)  # keys: NxC
                k = nn.functional.normalize(k, dim=1)
            # compute logits
            # Einstein sum is more intuitive
            # positive logits: Nx1
            l_pos = torch.einsum('nc,nc->n', [q, k]).unsqueeze(-1)
            # negative logits: NxK
            l_neg = torch.einsum('nc,ck->nk', [q, self.queue.clone().detach()])

            # logits: Nx(1+K)
            logits = torch.cat([l_pos, l_neg], dim=1)

            # apply temperature
            logits /= self.T

            # labels: positive key indicators
            labels = torch.zeros(logits.shape[0], dtype=torch.long).cuda()

            # dequeue and enqueue
            self._dequeue_and_enqueue(k)

            return embedding, logits, labels, inter
        else:
            embedding, _, inter = self.encoder_q(im_q)

            return embedding, inter

1.2 DGRN模块

DGRN模块的实现代码如下所示,可以看到核心是DGG模块,其不断迭代优化输入图像。

class DGRN(nn.Module):
    def __init__(self, opt, conv=default_conv):
        super(DGRN, self).__init__()

        self.n_groups = 5
        n_blocks = 5
        n_feats = 64
        kernel_size = 3

        # head module
        modules_head = [conv(3, n_feats, kernel_size)]
        self.head = nn.Sequential(*modules_head)

        # body
        modules_body = [
            DGG(default_conv, n_feats, kernel_size, n_blocks) \
            for _ in range(self.n_groups)
        ]
        modules_body.append(conv(n_feats, n_feats, kernel_size))
        self.body = nn.Sequential(*modules_body)

        # tail
        modules_tail = [conv(n_feats, 3, kernel_size)]
        self.tail = nn.Sequential(*modules_tail)

    def forward(self, x, inter):
        # head
        x = self.head(x)

        # body
        res = x
        for i in range(self.n_groups):
            res = self.body[i](res, inter)
        res = self.body[-1](res)
        res = res + x

        # tail
        x = self.tail(res)

        return x

在这里插入图片描述
DGG模块的结构示意如下所示
在这里插入图片描述
DGG代码实现如下所示,DGG模块内嵌DGB模块,DGB模块内嵌DGM模块,DGM模块内嵌SFT_layer模块与DCN_layer(可变性卷积)
在这里插入图片描述

2、loss实现

AIRNet中提到的loss如下所示,其中Lrec是L1 loss,Lcl是Moco模块实现的对比损失。
在这里插入图片描述
AIRNet的loss实现代码在train.py中,CE loss是针对CBDE(Moco模块)的输出进行计算,l1 loss是针对修复图像与清晰图片。

    # Network Construction
    net = AirNet(opt).cuda()
    net.train()

    # Optimizer and Loss
    optimizer = optim.Adam(net.parameters(), lr=opt.lr)
    CE = nn.CrossEntropyLoss().cuda()
    l1 = nn.L1Loss().cuda()

    # Start training
    print('Start training...')
    for epoch in range(opt.epochs):
        for ([clean_name, de_id], degrad_patch_1, degrad_patch_2, clean_patch_1, clean_patch_2) in tqdm(trainloader):
            degrad_patch_1, degrad_patch_2 = degrad_patch_1.cuda(), degrad_patch_2.cuda()
            clean_patch_1, clean_patch_2 = clean_patch_1.cuda(), clean_patch_2.cuda()

            optimizer.zero_grad()

            if epoch < opt.epochs_encoder:
                _, output, target, _ = net.E(x_query=degrad_patch_1, x_key=degrad_patch_2)
                contrast_loss = CE(output, target)
                loss = contrast_loss
            else:
                restored, output, target = net(x_query=degrad_patch_1, x_key=degrad_patch_2)
                contrast_loss = CE(output, target)
                l1_loss = l1(restored, clean_patch_1)
                loss = l1_loss + 0.1 * contrast_loss

            # backward
            loss.backward()
            optimizer.step()

这里可以看出来,AIRNet首先是训练CBDE模块,最后才训练CBDE模块+DGRN模块。

3、TrainDataset

TrainDataset的实现代码在utils\dataset_utils.py中,首先找到__getitem__函数进行分析。以下代码为关键部分,删除了大部分在逻辑上重复的部分。TrainDataset一共支持5种数据类型,‘denoise_15’: 0, ‘denoise_25’: 1, ‘denoise_50’: 2,是不需要图像对的(在代码里面自动对图像添加噪声);‘derain’: 3, ‘dehaze’: 4是需要图像对进行训练的。

class TrainDataset(Dataset):
    def __init__(self, args):
        super(TrainDataset, self).__init__()
        self.args = args
        self.rs_ids = []
        self.hazy_ids = []
        self.D = Degradation(args)
        self.de_temp = 0
        self.de_type = self.args.de_type

        self.de_dict = {'denoise_15': 0, 'denoise_25': 1, 'denoise_50': 2, 'derain': 3, 'dehaze': 4}

        self._init_ids()

        self.crop_transform = Compose([
            ToPILImage(),
            RandomCrop(args.patch_size),
        ])
        self.toTensor = ToTensor()
        
    def __getitem__(self, _):
        de_id = self.de_dict[self.de_type[self.de_temp]]

        if de_id < 3:
            if de_id == 0:
                clean_id = self.s15_ids[self.s15_counter]
                self.s15_counter = (self.s15_counter + 1) % self.num_clean
                if self.s15_counter == 0:
                    random.shuffle(self.s15_ids)

            # clean_id = random.randint(0, len(self.clean_ids) - 1)
            clean_img = crop_img(np.array(Image.open(clean_id).convert('RGB')), base=16)
            clean_patch_1, clean_patch_2 = self.crop_transform(clean_img), self.crop_transform(clean_img)
            clean_patch_1, clean_patch_2 = np.array(clean_patch_1), np.array(clean_patch_2)

            # clean_name = self.clean_ids[clean_id].split("/")[-1].split('.')[0]
            clean_name = clean_id.split("/")[-1].split('.')[0]

            clean_patch_1, clean_patch_2 = random_augmentation(clean_patch_1, clean_patch_2)
            degrad_patch_1, degrad_patch_2 = self.D.degrade(clean_patch_1, clean_patch_2, de_id)

        clean_patch_1, clean_patch_2 = self.toTensor(clean_patch_1), self.toTensor(clean_patch_2)
        degrad_patch_1, degrad_patch_2 = self.toTensor(degrad_patch_1), self.toTensor(degrad_patch_2)

        self.de_temp = (self.de_temp + 1) % len(self.de_type)
        if self.de_temp == 0:
            random.shuffle(self.de_type)

        return [clean_name, de_id], degrad_patch_1, degrad_patch_2, clean_patch_1, clean_patch_2

可以看出TrainDataset返回的数据有:degrad_patch_1, degrad_patch_2, clean_patch_1, clean_patch_2。

3.1 clean_patch分析

通过以下代码可以看出 clean_patch_1, clean_patch_2是来自于同一个图片,然后基于crop_transform变化,变成了2个对象

            clean_img = crop_img(np.array(Image.open(clean_id).convert('RGB')), base=16)
            clean_patch_1, clean_patch_2 = self.crop_transform(clean_img), self.crop_transform(clean_img)
            # clean_name = self.clean_ids[clean_id].split("/")[-1].split('.')[0]
            clean_name = clean_id.split("/")[-1].split('.')[0]

            clean_patch_1, clean_patch_2 = random_augmentation(clean_patch_1, clean_patch_2)

crop_transform的定义如下,可见是随机进行crop

crop_transform = Compose([
            ToPILImage(),
            RandomCrop(args.patch_size),
        ])

random_augmentation的实现代码如下,可以看到只是随机对图像进行翻转或旋转,其目的是尽可能使随机crop得到clean_patch_1, clean_patch_2差异更大,避免裁剪出高度相似的patch。

def random_augmentation(*args):
    out = []
    flag_aug = random.randint(1, 7)
    for data in args:
        out.append(data_augmentation(data, flag_aug).copy())
    return out
def data_augmentation(image, mode):
    if mode == 0:
        # original
        out = image.numpy()
    elif mode == 1:
        # flip up and down
        out = np.flipud(image)
    elif mode == 2:
        # rotate counterwise 90 degree
        out = np.rot90(image)
    elif mode == 3:
        # rotate 90 degree and flip up and down
        out = np.rot90(image)
        out = np.flipud(out)
    elif mode == 4:
        # rotate 180 degree
        out = np.rot90(image, k=2)
    elif mode == 5:
        # rotate 180 degree and flip
        out = np.rot90(image, k=2)
        out = np.flipud(out)
    elif mode == 6:
        # rotate 270 degree
        out = np.rot90(image, k=3)
    elif mode == 7:
        # rotate 270 degree and flip
        out = np.rot90(image, k=3)
        out = np.flipud(out)
    else:
        raise Exception('Invalid choice of image transformation')
    return out
    

3.2 degrad_patch分析

degrad_patch来自于clean_patch,可以看到是通过D.degrade进行转换的。

degrad_patch_1, degrad_patch_2 = self.D.degrade(clean_patch_1, clean_patch_2, de_id)

D.degrade相关的代码如下,可以看到只是对图像添加噪声。难怪AIRNet在图像去噪上效果最好。

class Degradation(object):
    def __init__(self, args):
        super(Degradation, self).__init__()
        self.args = args
        self.toTensor = ToTensor()
        self.crop_transform = Compose([
            ToPILImage(),
            RandomCrop(args.patch_size),
        ])

    def _add_gaussian_noise(self, clean_patch, sigma):
        # noise = torch.randn(*(clean_patch.shape))
        # clean_patch = self.toTensor(clean_patch)
        noise = np.random.randn(*clean_patch.shape)
        noisy_patch = np.clip(clean_patch + noise * sigma, 0, 255).astype(np.uint8)
        # noisy_patch = torch.clamp(clean_patch + noise * sigma, 0, 255).type(torch.int32)
        return noisy_patch, clean_patch

    def _degrade_by_type(self, clean_patch, degrade_type):
        if degrade_type == 0:
            # denoise sigma=15
            degraded_patch, clean_patch = self._add_gaussian_noise(clean_patch, sigma=15)
        elif degrade_type == 1:
            # denoise sigma=25
            degraded_patch, clean_patch = self._add_gaussian_noise(clean_patch, sigma=25)
        elif degrade_type == 2:
            # denoise sigma=50
            degraded_patch, clean_patch = self._add_gaussian_noise(clean_patch, sigma=50)

        return degraded_patch, clean_patch

    def degrade(self, clean_patch_1, clean_patch_2, degrade_type=None):
        if degrade_type == None:
            degrade_type = random.randint(0, 3)
        else:
            degrade_type = degrade_type

        degrad_patch_1, _ = self._degrade_by_type(clean_patch_1, degrade_type)
        degrad_patch_2, _ = self._degrade_by_type(clean_patch_2, degrade_type)
        return degrad_patch_1, degrad_patch_2

4、推理演示

项目中默认包含了All.pth,要单独任务的模型可以到预训练模型下载地址: Google Drive and Baidu Netdisk (password: cr7d). 下载模型放到 ckpt/ 目录下

打开demo.py,将 subprocess.check_output(['mkdir', '-p', opt.output_path]) 替换为os.makedirs(opt.output_path,exist_ok=True),避免在window上报错,具体修改如下所示
在这里插入图片描述

demo.py默认从test\demo目录下读取图片进行测试,可见原始图像如下
在这里插入图片描述
代码运行后的输出结果默认保存在 output\demo目录下,可见对于去雨,去雾,去噪声效果都比较好。
在这里插入图片描述
模型推理时间如下所示,可以看到对一张320, 480的图片,要0.54s
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/703927.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

尚品汇-(一)

&#xff08;1&#xff09;技术介绍 &#xff08;2&#xff09;业务介绍 &#xff08;3&#xff09;虚拟机安装 可以稍后配置镜像:选第二个 采用第二项NET模式&#xff1a; 安装完成&#xff1a;开启 不选择界面的&#xff0c;选择基础的 分配了ip&#xff1a; 测试网络 为…

Debain12 离线安装docker

官网教程&#xff1a;https://docs.docker.com/engine/install/debian/ 步骤 1. 解压 docker-deb.7z 安装包并上传Linux &#xff08;资源在PC端文章顶部&#xff09; 2. 安装 .deb 包 sudo dpkg -i ./containerd.io_<version>_<arch>.deb \./docker-ce_<vers…

贪心+构造,CF1153 C. Serval and Parenthesis Sequence

一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 Problem - 1153C - Codeforces 二、解题报告 1、思路分析 对于括号匹配问题我们经典做法是左括号当成1&#xff0c;右括号当成-1 那么只要任意前缀非负且最终总和为0那么该括号序列就是合法 对于本题&…

ThinkPHP+Bootstrap简约自适应网址导航网站源码

使用 ThinkPHPbootstrap 开发&#xff0c;后台采用全局 ajax 无刷新加载&#xff0c;前后台自适应&#xff0c;前台页面非常简洁适合自己收藏网站或做导航网站。 搭建教程&#xff1a; 1.整个主机 2.绑定解析域名 3.上传源码&#xff0c;解压 把解压出来的 nav.sql 文件导入数…

Linux进程间通信---使用【共享内存+信号量+消息队列】的组合来实现服务器进程与客户进程间的通信

IPC结合实现进程间通信实例 下面将使用【共享内存信号量消息队列】的组合来实现服务器进程与客户进程间的通信。 共享内存用来传递数据&#xff1b;信号量用来同步&#xff1b;消息队列用来 在客户端修改了共享内存后通知服务器读取。 server.c&#xff1a;服务端接收信息 …

解决linux jenkins要求JDK版本与项目版本JDK不一致问题

背景–问题描述&#xff1a; 新入职公司&#xff0c;交接人说jenkins运行有问题&#xff0c;现在都是手动发布&#xff0c;具体原因让我自己看&#xff08;笑哭&#xff09;。我人都蒙了&#xff0c;测试环境都手动发布&#xff0c;那不是麻烦的要死&#xff01; 接手后&am…

【后端开发】服务开发场景之高可用(冗余设计,服务限流,降级熔断,超时重试,性能测试)

【后端开发】服务开发场景之高可用&#xff08;冗余设计&#xff0c;服务限流&#xff0c;降级熔断&#xff0c;超时重试&#xff0c;性能测试&#xff09; 文章目录 序&#xff1a;如何设计一个高可用的系统&#xff1f;可用性的判断指标是什么&#xff1f;哪些情况会导致系统…

人工智能(三)AI是怎么学习的

一、引言 通过之前的人工智能架构分析和Transformer模型的原理介绍&#xff0c;读者应该对人工智能有了一个初步的了解。 但是很多读者不是很想知道那么多软件方面的专业知识&#xff0c;通过大家的问题&#xff0c;大家关心的主要是三个方面&#xff1a; ai是怎么学习的&#…

数字政府与大模型

1. 什么是数字政府&#xff1f; 数字政府是指运用信息技术&#xff0c;如互联网、大数据、云计算等&#xff0c;来改革政府的服务提供方式、决策过程和内部管理&#xff0c;以提升效率、透明度和公众参与度的新型政府形态。 2. 大模型在数字政府中的作用是什么&#xff1f; …

htb_Blurry

端口扫描 8 按照教程注册安装clear ml 加载configuration的时候会报错 将json里的API&#xff0c;File Store的host都添加到/etc/hosts中 即可成功初始化 查找clear ml漏洞 发现一个cve-2024-24590 下面是一个利用脚本&#xff0c;但不能直接用 ClearML-vulnerability-e…

partially initialized module ‘charset_normalizer‘ has no attribute ‘md__mypyc‘

django项目运行报错&#xff1a; partially initialized module ‘charset_normalizer‘ has no attribute ‘md__mypyc‘…… 解决办法 pip install --force-reinstall charset-normalizer3.1.0

OpenCV 的模板匹配

OpenCV中的模板匹配 模板匹配&#xff08;Template Matching&#xff09;是计算机视觉中的一种技术&#xff0c;用于在大图像中找到与小图像&#xff08;模板&#xff09;相匹配的部分。OpenCV提供了多种模板匹配的方法&#xff0c;主要包括基于相关性和基于平方差的匹配方法。…

【复旦邱锡鹏教授《神经网络与深度学习公开课》笔记】线性分类模型损失函数对比

本节均以二分类问题为例进行展开&#xff0c;统一定义类别标签 y ∈ { 1 , − 1 } y\in\{1,-1\} y∈{1,−1}&#xff0c;则分类正确时 y f ( x ; w ) > 0 yf(x;w)>0 yf(x;w)>0&#xff0c;且值越大越正确&#xff1b;错误时 y f ( x ; w ) < 0 yf(x;w)<0 yf(x;…

Anime Girls Pack

动漫女孩包 35个动画&#xff08;就地&#xff09;支持人形。 8情绪。 角色列表&#xff1a;原艾艾琪惠美子惠理文子星薰和子佳子奈子理子凛老师小樱老师津雨僵尸女孩01 下载&#xff1a;​​Unity资源商店链接资源下载链接 效果图&#xff1a;

Python 中浅拷贝(copy)和深拷贝(deepcopy)

1. 浅拷贝&#xff1a; 它创建一个新的对象&#xff0c;但对于原始对象内的子对象&#xff08;如列表中的嵌套列表&#xff09;&#xff0c;只是复制了引用。例如&#xff1a; import copy original_list [1, 2, 3] shallow_copied_list copy.copy(original_list) original_…

【stable diffusion】ComfyUI扩展安装以及点开后页面空白问题解决办法

扩展安装 虽然大家都推荐将扩展包直接放到extension文件夹的方式&#xff0c;但我还是推荐直接在sd webui的扩展处下载&#xff0c;酱紫比较好维护一点&#xff0c;我个人感觉。 按照上图顺序点击会出现”URLError: <urlopen error [Errno 11004] getaddrinfo failed>”…

排序

排序的概念及引用 排序的概念 排序&#xff1a;所谓排序&#xff0c;就是使一串记录&#xff0c;按照其中的某个或某些关键字的大小&#xff0c;递增或递减的排列起来的操作。 稳定性&#xff1a;假定在待排序的记录序列中&#xff0c;存在多个具有相同的关键字的记录&#…

采用创新的FPGA 器件来实现更经济且更高能效的大模型推理解决方案

作者&#xff1a;Bob Siller&#xff0c;Achronix半导体产品营销总监 摘要&#xff1a;本文根据完整的基准测试&#xff0c;将Achronix Semiconductor公司推出的Speedster7t FPGA与GPU解决方案进行比较&#xff0c;在运行同一个Llama2 70B参数模型时&#xff0c;该项基于FPGA的…

作业8:信息存储的层次与并行技术

作业8&#xff1a;信息存储的层次与并行技术 一. 单选题&#xff08;共7题&#xff0c;70分&#xff09; (单选题) 考虑为以下表达式生成代码 A&#xff1d;B&#xff0b;C &#xff1b; D&#xff1d;E&#xff0d;F &#xff1b; 在执行过程中不需要插入任何停顿周期就能够消…

【机器学习】支持向量机(个人笔记)

文章目录 SVM 分类器的误差函数分类误差函数距离误差函数C 参数 非线性边界的 SVM 分类器&#xff08;内核方法&#xff09;多项式内核径向基函数&#xff08;RBF&#xff09;内核 源代码文件请点击此处&#xff01; SVM 分类器的误差函数 SVM 使用两条平行线&#xff0c;使用…