【复旦邱锡鹏教授《神经网络与深度学习公开课》笔记】线性分类模型损失函数对比

本节均以二分类问题为例进行展开,统一定义类别标签 y ∈ { + 1 , − 1 } y\in\{+1,-1\} y{+1,1},则分类正确时 y f ( x ; w ) > 0 yf(x;w)>0 yf(x;w)>0,且值越大越正确;错误时 y f ( x ; w ) < 0 yf(x;w)<0 yf(x;w)<0,且值越小越错误。不同损失函数间的损失随 y f ( x ; w ) yf(x;w) yf(x;w)变化如下图所示:
在这里插入图片描述

平方损失

L = ( y − f ( x ; w ) ) 2 = y 2 − 2 y f ( x ; w ) + f 2 ( x ; w ) = 1 − 2 y f ( x ; w ) + y 2 f 2 ( x ; w ) = ( 1 − y f ( x ; w ) ) 2 \begin{aligned} \mathcal{L} &=(y-f(x;w))^2 \\ &=y^2-2yf(x;w)+f^2(x;w) \\ &=1-2yf(x;w)+y^2f^2(x;w) \\ &=(1-yf(x;w))^2 \end{aligned} L=(yf(x;w))2=y22yf(x;w)+f2(x;w)=12yf(x;w)+y2f2(x;w)=(1yf(x;w))2
对于平方损失来说,当 y f ( x ; w ) < 1 yf(x;w)<1 yf(x;w)<1时,损失函数单调递减,此时如果用梯度下降进行优化,最终会收敛于点1。但当 y f ( x ; w ) > 1 yf(x;w)>1 yf(x;w)>1时,损失函数单调递减,同样在进行优化时还是会收敛于1,但事实上 y f ( x ; w ) yf(x;w) yf(x;w)越大说明分类越正确。因此可以说,平方损失不适合做分类任务。

Logistic回归的损失函数(交叉熵损失)

L = − I ( y = 1 ) log ⁡ σ ( f ( x ; w ) ) − I ( y = − 1 ) log ⁡ ( 1 − σ ( f ( x ; w ) ) ) = − I ( y = 1 ) log ⁡ σ ( f ( x ; w ) ) − I ( y = − 1 ) log ⁡ ( σ ( − f ( x ; w ) ) ) = − log ⁡ σ ( y f ( x ; w ) ) = log ⁡ σ − 1 ( y f ( x ; w ) ) = log ⁡ ( 1 + exp ⁡ ( − y f ( x ; w ) ) ) \begin{aligned} \mathcal{L} &=-I(y=1)\log\sigma(f(x;w))-I(y=-1)\log(1-\sigma(f(x;w)))\\ &=-I(y=1)\log\sigma(f(x;w))-I(y=-1)\log(\sigma(-f(x;w)))\\ &=-\log\sigma(yf(x;w))\\ &=\log\sigma^{-1}(yf(x;w))\\ &=\log(1+\exp(-yf(x;w))) \end{aligned} L=I(y=1)logσ(f(x;w))I(y=1)log(1σ(f(x;w)))=I(y=1)logσ(f(x;w))I(y=1)log(σ(f(x;w)))=logσ(yf(x;w))=logσ1(yf(x;w))=log(1+exp(yf(x;w)))
对于函数 σ ( x ) \sigma(x) σ(x),可证 1 − σ ( x ) = σ ( − x ) 1-\sigma(x)=\sigma(-x) 1σ(x)=σ(x),且 I I I是指示函数,
I ( y = 1 ) = 1 y = 1 = { 1 y = 1 0 y = − 1 I(y=1)=\mathbb{1}_{y=1}=\left\{\begin{aligned} &1&y=1\\\\ &0&y=-1 \end{aligned}\right. I(y=1)=1y=1= 10y=1y=1
I ( y = − 1 ) = 1 y = − 1 = { 1 y = − 1 0 y = 1 I(y=-1)=\mathbb{1}_{y=-1}=\left\{\begin{aligned} &1&y=-1\\\\ &0&y=1 \end{aligned}\right. I(y=1)=1y=1= 10y=1y=1
由图像可知,随着 y f ( x ; w ) yf(x;w) yf(x;w)的增大,函数损失逐渐减小最终趋于0。这样虽然满足了 y f ( x ; w ) yf(x;w) yf(x;w)越大分类效果越好的条件,但其实这是没必要的,因为当损失大于0时就可以完成分类任务。因此虽然说交叉熵损失可以满足分类要求,但造成了一些不必要的计算,仍然具有改进空间。

感知器的损失函数

L = max ⁡ ( 0 , − y f ( x ; w ) ) \mathcal{L}=\max(0,-yf(x;w)) L=max(0,yf(x;w))
感知器损失解决了交叉熵损失的问题。感知器损失是专门为分类而设计的损失函数,其结果与真实效果基本一致。

软间隔支持向量机的损失函数(Hinge损失)

L = max ⁡ ( 0 , 1 − y f ( x ; w ) ) \mathcal{L}=\max(0,1-yf(x;w)) L=max(0,1yf(x;w))
Hinge损失与感知器损失在几何上的不同仅仅在于Hinge损失在感知器损失的基础上向右平移了一个单位,这就导致了Hinge损失对距离分界面较近的样本( y f ( x ; w ) yf(x;w) yf(x;w)落在0到1之间)造成一定的惩罚。

结论

从模型健壮性角度来讲,选择支持向量机(Hinge损失)来解决一般分类问题的效果更好
各线性分类模型对比如下表所示
在这里插入图片描述

XOR问题

感知器和支持向量机虽然在线性可分问题上表现良好,但其无法解决非线性可分问题,例如XOR(异或)问题。
假设空间中有两个变量 ( x 1 , x 2 ) (x_1,x_2) (x1,x2),对两个变量分别取与、或、异或逻辑运算,结果如下图所示。
在这里插入图片描述

对于与运算和或运算产生的结果来说,总能找到一个分界面来把两类分开,也就是说这两个结果产生的数据集是线性可分的;但异或运算的结果无法直接找到一个分界面,也就是说它的结果数据是非线性可分的。XOR这类非线性可分问题是无法通过线性分类器来解决的。
要解决这类问题,可以借助使用”基函数“的广义线性模型,也就是把线性模型过一个基函数,让线性模型变为非线性的,也就是将 f ( x ) = w T x f(x)=w^Tx f(x)=wTx变成 f ( ϕ ( x ) ) = w T ϕ ( x ) f(\phi(x))=w^T\phi(x) f(ϕ(x))=wTϕ(x),这样就实现了将非线性可分的数据集映射到另一个空间中,映射的数据集在这个空间中是线性可分的。

以下图为例,
在这里插入图片描述

左图表示原来的数据集,可见该数据集是非线性可分的。但它有一个很明显的特征,对于这个数据集来说,可以找到一个中心点,计算样本到中心点的距离,使得中心点某个范围内的为一类,范围外的为另一类,这样就可以构建出一个特征函数,将原本非线性可分的数据集映射到线性可分的数据集上。(上面这个图是按照坐标(-1,-1)附近那个绿色中心点建立的,得到的结果就如右图所示)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/703903.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Anime Girls Pack

动漫女孩包 35个动画&#xff08;就地&#xff09;支持人形。 8情绪。 角色列表&#xff1a;原艾艾琪惠美子惠理文子星薰和子佳子奈子理子凛老师小樱老师津雨僵尸女孩01 下载&#xff1a;​​Unity资源商店链接资源下载链接 效果图&#xff1a;

Python 中浅拷贝(copy)和深拷贝(deepcopy)

1. 浅拷贝&#xff1a; 它创建一个新的对象&#xff0c;但对于原始对象内的子对象&#xff08;如列表中的嵌套列表&#xff09;&#xff0c;只是复制了引用。例如&#xff1a; import copy original_list [1, 2, 3] shallow_copied_list copy.copy(original_list) original_…

【stable diffusion】ComfyUI扩展安装以及点开后页面空白问题解决办法

扩展安装 虽然大家都推荐将扩展包直接放到extension文件夹的方式&#xff0c;但我还是推荐直接在sd webui的扩展处下载&#xff0c;酱紫比较好维护一点&#xff0c;我个人感觉。 按照上图顺序点击会出现”URLError: <urlopen error [Errno 11004] getaddrinfo failed>”…

排序

排序的概念及引用 排序的概念 排序&#xff1a;所谓排序&#xff0c;就是使一串记录&#xff0c;按照其中的某个或某些关键字的大小&#xff0c;递增或递减的排列起来的操作。 稳定性&#xff1a;假定在待排序的记录序列中&#xff0c;存在多个具有相同的关键字的记录&#…

采用创新的FPGA 器件来实现更经济且更高能效的大模型推理解决方案

作者&#xff1a;Bob Siller&#xff0c;Achronix半导体产品营销总监 摘要&#xff1a;本文根据完整的基准测试&#xff0c;将Achronix Semiconductor公司推出的Speedster7t FPGA与GPU解决方案进行比较&#xff0c;在运行同一个Llama2 70B参数模型时&#xff0c;该项基于FPGA的…

作业8:信息存储的层次与并行技术

作业8&#xff1a;信息存储的层次与并行技术 一. 单选题&#xff08;共7题&#xff0c;70分&#xff09; (单选题) 考虑为以下表达式生成代码 A&#xff1d;B&#xff0b;C &#xff1b; D&#xff1d;E&#xff0d;F &#xff1b; 在执行过程中不需要插入任何停顿周期就能够消…

【机器学习】支持向量机(个人笔记)

文章目录 SVM 分类器的误差函数分类误差函数距离误差函数C 参数 非线性边界的 SVM 分类器&#xff08;内核方法&#xff09;多项式内核径向基函数&#xff08;RBF&#xff09;内核 源代码文件请点击此处&#xff01; SVM 分类器的误差函数 SVM 使用两条平行线&#xff0c;使用…

探索Edge

目录 1.概述 1.1.什么是浏览器 1.2.浏览器的作用 2.Edge 2.1.什么是Edge 2.2.诞生背景 2.3.历史版本 2.4.作用 2.5.优缺点 2.5.1.优点 2.5.2.缺点 3.对比 3.1.和360浏览器的对比 3.2.和谷歌浏览器&#xff08;Chrome&#xff09;的对比 4.未来展望 5.总结 1.概…

构建稳定高效的消息传递中间件:消息队列系统的设计与实现

✨✨谢谢大家捧场&#xff0c;祝屏幕前的小伙伴们每天都有好运相伴左右&#xff0c;一定要天天开心哦&#xff01;✨✨ &#x1f388;&#x1f388;作者主页&#xff1a; 喔的嘛呀&#x1f388;&#x1f388; 目录 一、引言 二、设计目标 2.1、高可用性 1. 集群搭建 1.1 …

【ai】blender4.1 安装插件

开源软件,所以资料充足插件及配置 下载插件插件是python开发的 编辑中的偏好设置 点击选中 点击一键切换中文英文 切换主题 插件源码

R语言统计分析——图形文本、自定义坐标轴和图例

参考资料&#xff1a;R语言实战【第2版】 我们可以在图形上添加标题&#xff08;main&#xff09;、副标题&#xff08;sub&#xff09;、坐标轴标签&#xff08;xlab、ylab&#xff09;并指定标轴范围&#xff08;xlim、ylim&#xff09;。 # 录入数据 dose<-c(20,30,40,4…

Go API

Go语言提供了大量的标准库&#xff0c;因此 google 公司也为这些标准库提供了相应的API文档&#xff0c;用于告诉开发者如何使用这些标准库&#xff0c;以及标准库包含的方法。官方位置&#xff1a;https://golang.org Golang中文网在线标准库文档: https://studygolang.com/p…

函数递归(C语言)(详细过程!)

函数递归 一. 递归是什么1.1 递归的思想1.2 递归的限制条件 二. 递归举例2.1 求n的阶乘2.2 按顺序打印一个整数的每一位 三. 递归与迭代3.1 求第n个斐波那契数 一. 递归是什么 递归是学习C语言很重要的一个知识&#xff0c;递归就是函数自己调用自己&#xff0c;是一种解决问题…

与浪涌保护器相关的8/20μs和10/350μs波形

8/20μs和10/350μ是到底是什么&#xff1f; 浪涌保护器中有个极为重要的参数&#xff0c;8/20μs或10/350μs。浪涌保护器的作用主要是保护电子设备免受电源浪涌或瞬态电压影响的重要装置。主要应对雷击&#xff0c;包括直击雷和感应雷。由于直击雷和感应雷的能量不一样&…

RabbitMQ实践——在Ubuntu上安装并启用管理后台

大纲 环境安装启动管理后台 RabbitMQ是一款功能强大、灵活可靠的消息代理软件&#xff0c;为分布式系统中的通信问题提供了优秀的解决方案。无论是在大规模数据处理、实时分析还是微服务架构中&#xff0c;RabbitMQ都能发挥出色的性能&#xff0c;帮助开发者构建高效、稳定的系…

《Windows API每日一练》3.3 更好效果的滚动条

本节讲述滚动条的复杂使用方法&#xff0c;以便达到更好的效果。Windows操作系统提供了两套机制&#xff0c;一套机制是使用默认的对象属性进行简单的操作&#xff0c;并提供简单便捷的API接口函数。另一套机制是用户可以自定义对象属性&#xff0c;实现自己想要的效果。本节我…

【ARM Cache 及 MMU 系列文章 6.1 -- Cache maintenance 指令及相关寄存器有哪些?】

请阅读【ARM Cache 及 MMU/MPU 系列文章专栏导读】 及【嵌入式开发学习必备专栏】 文章目录 Cache Maintenance registers and instructionsDCZID_EL0DCZID_EL0寄存器字段解释 DCZ 使用场景Cache maintenance 范围选择 Cache maintenance 指令集 Cache Maintenance registers a…

公司活动想找媒体报道宣传怎样邀请媒体?

在当今信息爆炸的时代,对于正处于成长阶段的中小企业而言,有效且成本控制得当的宣传策略是推动品牌发展、扩大市场影响力的关键。尤其是在预算有限的情况下,如何让“好钢用在刀刃上”,实现宣传效果的最大化,成为众多企业共同面临的挑战。在此背景下,智慧软文发布系统网站作为一…

IDEA 高效插件工具

文章目录 LombokMaven Helper 依赖冲突any-rule(正则表达式插件)快速生成javadocGsonFormat (Aits) 将json解析成类Diagrams使用 类图SequenceDiagram时序图GenerateAllSetter&#xff08;AltEnter&#xff09;大小写转写String ManipulationGitToolBox 代码提交人activate-pow…

机器学习笔记 - 用于3D数据分类、分割的Point Net简述

一、简述 在本文中,我们将了解Point Net,目前,处理图像数据的方法有很多。从传统的计算机视觉方法到使用卷积神经网络到Transformer方法,几乎任何 2D 图像应用都会有某种现有的方法。然而,当涉及到 3D 数据时,现成的工具和方法并不那么丰富。3D 空间中一个工具就是Point …