采用创新的FPGA 器件来实现更经济且更高能效的大模型推理解决方案

作者:Bob Siller,Achronix半导体产品营销总监

摘要:本文根据完整的基准测试,将Achronix Semiconductor公司推出的Speedster7t FPGA与GPU解决方案进行比较,在运行同一个Llama2 70B参数模型时,该项基于FPGA的解决方案实现了超越性的LLM推理处理。

采用 FPGA 器件来加速LLM 性能,在运行 Llama2 70B 参数模型时,Speedster7t FPGA 如何与 GPU 解决方案相媲美?证据是令人信服的——Achronix Speedster7t FPGA通过提供计算能力、内存带宽和卓越能效的最佳组合,在处理大型语言模型(LLM)方面表现出色,这是当今LLM复杂需求的基本要求。

像 Llama2 这样的 LLM 的快速发展正在为自然语言处理(NLP)开辟一条新路线,有望提供比以往任何时候都更像人类的交互和理解。这些复杂的 LLM 是创新的催化剂,推动了对先进硬件解决方案的需求,以满足其密集处理需求。

我们的基准测试突出了 Speedster7t 系列处理 Llama2 70B 模型复杂性的能力,重点关注 FPGA 和 LLM 性能。这些测试(可根据要求提供结果)显示了Achronix FPGA对于希望将LLM的强大功能用于其NLP应用程序的开发人员和企业的潜力。这些基准测试展示了 Speedster7t FPGA 如何超越市场,提供无与伦比的性能,同时降低运营成本和环境影响。

Llama2 70B LLM 运行在 Speedster7t FPGA

2023 年 7 月,Microsoft 和 Meta 推出了他们的开源 LLM,Llama2 开创了 AI 驱动语言处理的新先例。Llama2 采用多种配置设计,以满足各种计算需求,包括 700 亿、130 亿和 700 亿个参数,使其处于 LLM 创新的最前沿。Achronix和我们的合作伙伴 Myrtle.ai 对700亿参数的Llama2模型进行了深入的基准分析,展示了使用Speedster7t FPGA进行LLM加速的优势。

基准测试结果:Speedster7t FPGA 与业界领先的 GPU 对比

我们在 Speedster7t FPGA 上测试了 Llama2 70B 模型的推理性能,并将其与领先的 GPU 进行了比较。该基准测试是通过对输入、输出序列长度 (1,128) 和批处理大小 =1 进行建模来完成的。结果表明,Speedster7t AC7t1500在LLM处理中的有效性。

FPGA 成本基于由 Speedster7t FPGA 提供支持的 VectorPath 加速卡的标价。同样,我们在此分析中使用了可比GPU卡的标价。使用这些成本信息和每秒产生的输出令牌数量,我们计算出基于 FPGA 的解决方案的 $/token 提高了 200%。除了成本优势外,在比较 FPGA 和 GPU 卡的相对功耗时,我们观察到与基于 GPU 的解决方案相比,产生的 kWh/token 提高了 200%。这些优势表明 FPGA 如何成为一种经济且能效高效的 LLM 解决方案。

面向 LLM FPGASpeedster7t 的优势

Achronix Speedster7t系列FPGA旨在优化LLM操作,平衡LLM硬件的关键要求,包括:

高性能计算 – 具有高性能计算能力的尖端硬件对于管理 LLM 推理核心的复杂矩阵计算至关重要。

高带宽内存 – 高效的 LLM 推理依赖于高带宽内存,通过模型的网络参数快速馈送数据,而不会出现瓶颈。

扩展和适应能力 – 现代 LLM 推理需要能够随着模型规模的增长而扩展并灵活适应 LLM 架构的持续进步的硬件。

高能效处理 – 可持续的 LLM 推理需要硬件能够最大限度地提高计算输出,同时最大限度地降低能耗,从而降低运营成本和环境影响。

Speedster7t FPGA 提供以下功能,以应对实施现代 LLM 处理解决方案的挑战:

计算性能 – 通过其灵活的机器学习处理器 (MLP) 模块支持复杂的 LLM 任务。

GDDR6 DRAM 带宽 – 确保以 4 Tbps 的内存带宽快速处理大型 LLM 数据集。

大量的 GDDR6 DRAM 容量 – 可容纳 Llama2 等扩展的 LLM,每个 FPGA 的容量为 32 GB。

用于 LLM 的集成 SRAM – 提供低延迟、高带宽的存储,具有 190 Mb 的 SRAM,非常适合存储激活和模型权重。

多种本机数字格式 – 适应 LLM 需求,支持块浮点 (BFP)、FP16、bfloat16 等。

高效的片上数据传输 – 2D NoC 超过 20 Tbps,简化片上数据流量。

扩展横向扩展带宽 – 支持多达32个112 Gbps SerDes 满足 LLM 需求,增强连接性。

自适应逻辑级可编程性 – 使用 690K 6 输入 LUT 为 LLM 的快速发展做好准备。

针对 LLM 推理优化的 FPGA

在快速变化的人工智能和自然语言处理领域,使用 FPGA 而不是 GPU 来加速 LLM 是一个相当新的想法。该基准测试展示了设计人员如何从使用Achronix的FPGA技术中受益。Achronix Speedster7t系列FPGA是这一变化的关键技术,在高性能、高带宽存储器、易于扩展和电源效率之间实现了出色的平衡。

基于详细的基准分析,将 Speedster7t FPGA 与领先的 GPU 在处理 Llama2 70B 模型方面的能力进行比较,结果表明 Speedster7t FPGA 能够提供高水平的性能,同时大大降低运营成本和环境影响,突出了它在未来 LLM 创建和使用中的重要作用。

如果希望进一步了解如何使用FPGA器件来加速您的LLM程序,以及 FPGA 加速 LLM 解决方案的未来发展机遇,请联系Achronix,获取详细的基准测试结果,并帮助您确定Achronix FPGA技术如何加速您的LLM设计。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/703897.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

作业8:信息存储的层次与并行技术

作业8:信息存储的层次与并行技术 一. 单选题(共7题,70分) (单选题) 考虑为以下表达式生成代码 A=B+C ; D=E-F ; 在执行过程中不需要插入任何停顿周期就能够消…

【机器学习】支持向量机(个人笔记)

文章目录 SVM 分类器的误差函数分类误差函数距离误差函数C 参数 非线性边界的 SVM 分类器(内核方法)多项式内核径向基函数(RBF)内核 源代码文件请点击此处! SVM 分类器的误差函数 SVM 使用两条平行线,使用…

探索Edge

目录 1.概述 1.1.什么是浏览器 1.2.浏览器的作用 2.Edge 2.1.什么是Edge 2.2.诞生背景 2.3.历史版本 2.4.作用 2.5.优缺点 2.5.1.优点 2.5.2.缺点 3.对比 3.1.和360浏览器的对比 3.2.和谷歌浏览器(Chrome)的对比 4.未来展望 5.总结 1.概…

构建稳定高效的消息传递中间件:消息队列系统的设计与实现

✨✨谢谢大家捧场,祝屏幕前的小伙伴们每天都有好运相伴左右,一定要天天开心哦!✨✨ 🎈🎈作者主页: 喔的嘛呀🎈🎈 目录 一、引言 二、设计目标 2.1、高可用性 1. 集群搭建 1.1 …

【ai】blender4.1 安装插件

开源软件,所以资料充足插件及配置 下载插件插件是python开发的 编辑中的偏好设置 点击选中 点击一键切换中文英文 切换主题 插件源码

R语言统计分析——图形文本、自定义坐标轴和图例

参考资料&#xff1a;R语言实战【第2版】 我们可以在图形上添加标题&#xff08;main&#xff09;、副标题&#xff08;sub&#xff09;、坐标轴标签&#xff08;xlab、ylab&#xff09;并指定标轴范围&#xff08;xlim、ylim&#xff09;。 # 录入数据 dose<-c(20,30,40,4…

Go API

Go语言提供了大量的标准库&#xff0c;因此 google 公司也为这些标准库提供了相应的API文档&#xff0c;用于告诉开发者如何使用这些标准库&#xff0c;以及标准库包含的方法。官方位置&#xff1a;https://golang.org Golang中文网在线标准库文档: https://studygolang.com/p…

函数递归(C语言)(详细过程!)

函数递归 一. 递归是什么1.1 递归的思想1.2 递归的限制条件 二. 递归举例2.1 求n的阶乘2.2 按顺序打印一个整数的每一位 三. 递归与迭代3.1 求第n个斐波那契数 一. 递归是什么 递归是学习C语言很重要的一个知识&#xff0c;递归就是函数自己调用自己&#xff0c;是一种解决问题…

与浪涌保护器相关的8/20μs和10/350μs波形

8/20μs和10/350μ是到底是什么&#xff1f; 浪涌保护器中有个极为重要的参数&#xff0c;8/20μs或10/350μs。浪涌保护器的作用主要是保护电子设备免受电源浪涌或瞬态电压影响的重要装置。主要应对雷击&#xff0c;包括直击雷和感应雷。由于直击雷和感应雷的能量不一样&…

RabbitMQ实践——在Ubuntu上安装并启用管理后台

大纲 环境安装启动管理后台 RabbitMQ是一款功能强大、灵活可靠的消息代理软件&#xff0c;为分布式系统中的通信问题提供了优秀的解决方案。无论是在大规模数据处理、实时分析还是微服务架构中&#xff0c;RabbitMQ都能发挥出色的性能&#xff0c;帮助开发者构建高效、稳定的系…

《Windows API每日一练》3.3 更好效果的滚动条

本节讲述滚动条的复杂使用方法&#xff0c;以便达到更好的效果。Windows操作系统提供了两套机制&#xff0c;一套机制是使用默认的对象属性进行简单的操作&#xff0c;并提供简单便捷的API接口函数。另一套机制是用户可以自定义对象属性&#xff0c;实现自己想要的效果。本节我…

【ARM Cache 及 MMU 系列文章 6.1 -- Cache maintenance 指令及相关寄存器有哪些?】

请阅读【ARM Cache 及 MMU/MPU 系列文章专栏导读】 及【嵌入式开发学习必备专栏】 文章目录 Cache Maintenance registers and instructionsDCZID_EL0DCZID_EL0寄存器字段解释 DCZ 使用场景Cache maintenance 范围选择 Cache maintenance 指令集 Cache Maintenance registers a…

公司活动想找媒体报道宣传怎样邀请媒体?

在当今信息爆炸的时代,对于正处于成长阶段的中小企业而言,有效且成本控制得当的宣传策略是推动品牌发展、扩大市场影响力的关键。尤其是在预算有限的情况下,如何让“好钢用在刀刃上”,实现宣传效果的最大化,成为众多企业共同面临的挑战。在此背景下,智慧软文发布系统网站作为一…

IDEA 高效插件工具

文章目录 LombokMaven Helper 依赖冲突any-rule(正则表达式插件)快速生成javadocGsonFormat (Aits) 将json解析成类Diagrams使用 类图SequenceDiagram时序图GenerateAllSetter&#xff08;AltEnter&#xff09;大小写转写String ManipulationGitToolBox 代码提交人activate-pow…

机器学习笔记 - 用于3D数据分类、分割的Point Net简述

一、简述 在本文中,我们将了解Point Net,目前,处理图像数据的方法有很多。从传统的计算机视觉方法到使用卷积神经网络到Transformer方法,几乎任何 2D 图像应用都会有某种现有的方法。然而,当涉及到 3D 数据时,现成的工具和方法并不那么丰富。3D 空间中一个工具就是Point …

springboot的WebFlux 和Servlet

Spring Boot 中的 Servlet 定义&#xff1a; 在 Spring Boot 中&#xff0c;Servlet 应用程序通常基于 Spring MVC&#xff0c;它是一个基于 Servlet API 的 Web 框架。Spring MVC 提供了模型-视图-控制器&#xff08;MVC&#xff09;架构&#xff0c;用于构建 Web 应用程序。…

颠覆与创新:探寻Facebook未来的发展路径

Facebook&#xff0c;这个曾经引领社交网络革命的巨头&#xff0c;在如今竞争激烈的科技市场中&#xff0c;正面临着前所未有的挑战和机遇。如何在不断变化的数字世界中保持竞争力&#xff0c;成为业界领先者&#xff0c;这是摆在Facebook面前的重要课题。本文将探寻Facebook未…

STM32项目分享:车牌号识别系统

目录 一、前言 二、项目简介 1.功能详解 2.主要器件 三、原理图设计 四、PCB硬件设计 1.PCB图 2.PCB板打样焊接图 五、程序设计 六、实验效果 七、资料内容 项目分享 一、前言 项目成品图片&#xff1a; 哔哩哔哩视频链接&#xff1a; https://www.bilibili.…

【Mac】增加 safari 体验的插件笔记

Safari 本身的功能不全面&#xff0c;探索积累了一点插件笔记&#xff0c;提升使用体验&#xff1b;但后面因为插件或会影响运行速度&#xff0c;就全部都禁止了。做个笔记记录一下。 Cascadea 相当于 stylus&#xff0c;可以自定义页面。测试过几个&#xff0c;只有几个可行。…

Linux so文件无法找到及某条命令找不到的解决办法

前言 在一些定制软件中可能会自带so文件。或者自带一些二进制命令。 这时会如果运行某个程序会发生 **.so 文件无法找到的错误。 以及 * 某条命令无法找到的错误。 比如像是下面这样 解决办法&#xff1a; so文件无法找到 通过往 LD_LIBRARY_PATH 变量中追加路径来告诉程序…