动手学深度学习4.10 实战Kaggle比赛:预测房价-笔记练习(PyTorch)

以下内容为结合李沐老师的课程和教材补充的学习笔记,以及对课后练习的一些思考,自留回顾,也供同学之人交流参考。

本节课程地址:实战 Kaggle 比赛:预测房价_哔哩哔哩_bilibili

本节教材地址:4.10. 实战Kaggle比赛:预测房价 — 动手学深度学习 2.0.0 documentation (d2l.ai)

本节开源代码:...>d2l-zh>pytorch>chapter_multilayer-perceptrons>kaggle-house-price.ipynb


实战Kaggle比赛:预测房价

之前几节我们学习了一些训练深度网络的基本工具和网络正则化的技术(如权重衰减、暂退法等)。 本节我们将通过Kaggle比赛,将所学知识付诸实践。 Kaggle的房价预测比赛是一个很好的起点。 此数据集由Bart de Cock于2011年收集 (链接:Ames, Iowa: Alternative to the Boston Housing Data as an End of Semester Regression Project: Journal of Statistics Education: Vol 19, No 3 (tandfonline.com)), 涵盖了2006-2010年期间亚利桑那州埃姆斯市的房价。 这个数据集是相当通用的,不会需要使用复杂模型架构。 它比哈里森和鲁宾菲尔德的波士顿房价 数据集要大得多,也有更多的特征。

本节我们将详细介绍数据预处理、模型设计和超参数选择。 通过亲身实践,你将获得一手经验,这些经验将有益数据科学家的职业成长。

下载和缓存数据集

在整本书中,我们将下载不同的数据集,并训练和测试模型。 这里我们(实现几个函数来方便下载数据)。 首先,我们建立字典DATA_HUB, 它可以将数据集名称的字符串映射到数据集相关的二元组上, 这个二元组包含数据集的url和验证文件完整性的sha-1密钥。 所有类似的数据集都托管在地址为DATA_URL的站点上。

import hashlib
import os
import tarfile
import zipfile
import requests

#@save
DATA_HUB = dict()
DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/'

下面的download函数用来下载数据集, 将数据集缓存在本地目录(默认情况下为../data)中, 并返回下载文件的名称。 如果缓存目录中已经存在此数据集文件,并且其sha-1与存储在DATA_HUB中的相匹配, 我们将使用缓存的文件,以避免重复的下载。

def download(name, cache_dir=os.path.join('..', 'data')):  #@save
    """下载一个DATA_HUB中的文件,返回本地文件名"""
    assert name in DATA_HUB, f"{name} 不存在于 {DATA_HUB}"
    url, sha1_hash = DATA_HUB[name]
    os.makedirs(cache_dir, exist_ok=True)
    fname = os.path.join(cache_dir, url.split('/')[-1])
    if os.path.exists(fname):
        sha1 = hashlib.sha1()
        with open(fname, 'rb') as f:
            while True:
                data = f.read(1048576)
                if not data:
                    break
                sha1.update(data)
        if sha1.hexdigest() == sha1_hash:
            return fname  # 命中缓存
    print(f'正在从{url}下载{fname}...')
    r = requests.get(url, stream=True, verify=True)
    with open(fname, 'wb') as f:
        f.write(r.content)
    return fname

我们还需实现两个实用函数: 一个将下载并解压缩一个zip或tar文件, 另一个是将本书中使用的所有数据集从DATA_HUB下载到缓存目录中。

def download_extract(name, folder=None):  #@save
    """下载并解压zip/tar文件"""
    fname = download(name)
    base_dir = os.path.dirname(fname)
    data_dir, ext = os.path.splitext(fname)
    if ext == '.zip':
        fp = zipfile.ZipFile(fname, 'r')
    elif ext in ('.tar', '.gz'):
        fp = tarfile.open(fname, 'r')
    else:
        assert False, '只有zip/tar文件可以被解压缩'
    fp.extractall(base_dir)
    return os.path.join(base_dir, folder) if folder else data_dir

def download_all():  #@save
    """下载DATA_HUB中的所有文件"""
    for name in DATA_HUB:
        download(name)

Kaggle

Kaggle是一个当今流行举办机器学习比赛的平台, 每场比赛都以至少一个数据集为中心。 许多比赛有赞助方,他们为获胜的解决方案提供奖金。 该平台帮助用户通过论坛和共享代码进行互动,促进协作和竞争。 虽然排行榜的追逐往往令人失去理智: 有些研究人员短视地专注于预处理步骤,而不是考虑基础性问题。 但一个客观的平台有巨大的价值:该平台促进了竞争方法之间的直接定量比较,以及代码共享。 这便于每个人都可以学习哪些方法起作用,哪些没有起作用。 如果我们想参加Kaggle比赛,首先需要注册一个账户(见 下图)。

在房价预测比赛页面(如 下图 所示)的"Data"选项卡下可以找到数据集。我们可以通过下面的网址提交预测,并查看排名:

https://www.kaggle.com/c/house-prices-advanced-regression-techniques

访问和读取数据集

注意,竞赛数据分为训练集和测试集。 每条记录都包括房屋的属性值和属性,如街道类型、施工年份、屋顶类型、地下室状况等。 这些特征由各种数据类型组成。 例如,建筑年份由整数表示,屋顶类型由离散类别表示,其他特征由浮点数表示。 这就是现实让事情变得复杂的地方:例如,一些数据完全丢失了,缺失值被简单地标记为“NA”。 每套房子的价格只出现在训练集中(毕竟这是一场比赛)。 我们将希望划分训练集以创建验证集,但是在将预测结果上传到Kaggle之后, 我们只能在官方测试集中评估我们的模型。 在 上图 中,"Data"选项卡有下载数据的链接。

开始之前,我们将[使用pandas读入并处理数据], 这是我们在 2.2节 中引入的。 因此,在继续操作之前,我们需要确保已安装pandas。 幸运的是,如果我们正在用Jupyter阅读该书,可以在不离开笔记本的情况下安装pandas

# 如果没有安装pandas,请取消下一行的注释
# !pip install pandas

%matplotlib inline
import numpy as np
import pandas as pd
import torch
from torch import nn
from d2l import torch as d2l

为方便起见,我们可以使用上面定义的脚本下载并缓存Kaggle房屋数据集。

DATA_HUB['kaggle_house_train'] = (  #@save
    DATA_URL + 'kaggle_house_pred_train.csv',
    '585e9cc93e70b39160e7921475f9bcd7d31219ce')

DATA_HUB['kaggle_house_test'] = (  #@save
    DATA_URL + 'kaggle_house_pred_test.csv',
    'fa19780a7b011d9b009e8bff8e99922a8ee2eb90')

我们使用pandas分别加载包含训练数据和测试数据的两个CSV文件。

train_data = pd.read_csv(download('kaggle_house_train'))
test_data = pd.read_csv(download('kaggle_house_test'))

输出结果:

正在从http://d2l-data.s3-accelerate.amazonaws.com/kaggle_house_pred_train.csv下载../data/kaggle_house_pred_train.csv...
正在从http://d2l-data.s3-accelerate.amazonaws.com/kaggle_house_pred_test.csv下载../data/kaggle_house_pred_test.csv...

训练数据集包括1460个样本,每个样本80个特征和1个标签, 而测试数据集包含1459个样本,每个样本80个特征。

print(train_data.shape)
print(test_data.shape)

输出结果:

(1460, 81)
(1459, 80)

让我们看看[前四个和最后两个特征,以及相应标签](房价)。

print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]])

输出结果:

Id MSSubClass MSZoning LotFrontage SaleType SaleCondition SalePrice
0 1 60 RL 65.0 WD Normal 208500
1 2 20 RL 80.0 WD Normal 181500
2 3 60 RL 68.0 WD Normal 223500
3 4 70 RL 60.0 WD Abnorml 140000

我们可以看到,(在每个样本中,第一个特征是ID,) 这有助于模型识别每个训练样本。 虽然这很方便,但它不携带任何用于预测的信息。 因此,在将数据提供给模型之前,(我们将其从数据集中删除)。

# 删除train_data的第一列ID和最后一列房价;删除test_data的第一列索引
all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))

数据预处理

如上所述,我们有各种各样的数据类型。 在开始建模之前,我们需要对数据进行预处理。 首先,我们[将所有缺失的值替换为相应特征的平均值。]然后,为了将所有特征放在一个共同的尺度上, 我们(通过将特征重新缩放到零均值和单位方差来标准化数据):

x \leftarrow \frac{x - \mu}{\sigma},

其中 𝜇 和 𝜎 分别表示均值和标准差。 现在,这些特征具有零均值和单位方差,即 E[\frac{x-\mu}{\sigma}] = \frac{\mu - \mu}{\sigma} = 0 和 E[(x-\mu)^2] = (\sigma^2 + \mu^2) - 2\mu^2+\mu^2 = \sigma^2 。 直观地说,我们标准化数据有两个原因: 首先,它方便优化。 其次,因为我们不知道哪些特征是相关的, 所以我们不想让惩罚分配给一个特征的系数比分配给其他任何特征的系数更大。

# 若无法获得测试数据,则可根据训练数据计算均值和标准差
# all_features.dtypes 获取每个特征的数据类型
# all_features.dtypes != 'object' 返回一个布尔值的 Series,其中为 True 的位置表示对应的特征不是对象类型(即数值类型)
# .index 提取数值类型特征的索引,并在numeric_features中存储
numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index
# 对all_features中所有数值类型特征进行标准化处理
all_features[numeric_features] = all_features[numeric_features].apply(
    lambda x: (x - x.mean()) / (x.std()))
# 在标准化数据之后,所有均值消失,因此我们可以将缺失值设置为0
all_features[numeric_features] = all_features[numeric_features].fillna(0)

接下来,我们[处理离散值。] 这包括诸如“MSZoning”之类的特征。 (我们用独热编码替换它们), 方法与前面将多类别标签转换为向量的方式相同 (请参见3.4.1节)。 例如,“MSZoning”包含值“RL”和“Rm”。 我们将创建两个新的指示器特征“MSZoning_RL”和“MSZoning_RM”,其值为0或1。 根据独热编码,如果“MSZoning”的原始值为“RL”, 则:“MSZoning_RL”为1,“MSZoning_RM”为0。 pandas软件包会自动为我们实现这一点。

# “Dummy_na=True”将“na”(缺失值)视为有效的特征值,并为其创建指示符特征
# 未指定column时,pd.get_dummies函数默认转换所有的分类列,包括MSZoning、SaleType、SaleCondition
all_features = pd.get_dummies(all_features, dummy_na=True)
all_features.shape

输出结果:

(2919, 331)

可以看到此转换会将特征的总数量从79个(去掉ID)增加到331个。 最后,通过values属性,我们可以 [pandas格式中提取NumPy格式,并将其转换为张量表示]用于训练。

n_train = train_data.shape[0]
train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float32)
test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float32)
# 将SalePrice列单独提取为标签
train_labels = torch.tensor(
    train_data.SalePrice.values.reshape(-1, 1), dtype=torch.float32)

[训练]

首先,我们训练一个带有损失平方的线性模型。 显然线性模型很难让我们在竞赛中获胜,但线性模型提供了一种健全性检查, 以查看数据中是否存在有意义的信息。 如果我们在这里不能做得比随机猜测更好,那么我们很可能存在数据处理错误。 如果一切顺利,线性模型将作为基线(baseline)模型, 让我们直观地知道最好的模型有超出简单的模型多少。

loss = nn.MSELoss()
in_features = train_features.shape[1]

def get_net():
    net = nn.Sequential(nn.Linear(in_features,1))
    return net

房价就像股票价格一样,我们关心的是相对数量,而不是绝对数量。 因此,[我们更关心相对误差 \frac{y - \hat{y}}{y} ] 而不是绝对误差y - \hat{y} 。 例如,如果我们在俄亥俄州农村地区估计一栋房子的价格时, 假设我们的预测偏差了10万美元, 然而那里一栋典型的房子的价值是12.5万美元, 那么模型可能做得很糟糕。 另一方面,如果我们在加州豪宅区的预测出现同样的10万美元的偏差, (在那里,房价中位数超过400万美元) 这可能是一个不错的预测。

(解决这个问题的一种方法是用价格预测的对数来衡量差异)。 事实上,这也是比赛中官方用来评价提交质量的误差指标。 即将 |\log y - \log \hat{y}| \leq \delta 转换为 e^{-\delta} \leq \frac{\hat{y}}{y} \leq e^\delta 。 这使得预测价格的对数与真实标签价格的对数之间出现以下均方根误差:

\sqrt{\frac{1}{n}\sum_{i=1}^n\left(\log y_i -\log \hat{y}_i\right)^2}..

# rmse=Root Mean Squared Error,对数均方根误差
def log_rmse(net, features, labels):
    # 为了在取对数时进一步稳定该值,用torch.clamp()函数将小于1的值设置为1
    clipped_preds = torch.clamp(net(features), 1, float('inf'))
    rmse = torch.sqrt(loss(torch.log(clipped_preds),
                           torch.log(labels)))
    # .item() 方法将rmse转换为Python标量返回
    return rmse.item()

与前面的部分不同,[我们的训练函数将借助Adam优化器] (我们将在后面章节更详细地描述它)。 Adam优化器的主要吸引力在于它对初始学习率不那么敏感。

def train(net, train_features, train_labels, test_features, test_labels,
          num_epochs, learning_rate, weight_decay, batch_size):
    train_ls, test_ls = [], []
    train_iter = d2l.load_array((train_features, train_labels), batch_size)
    # 这里使用的是Adam优化算法
    optimizer = torch.optim.Adam(net.parameters(),
                                 lr = learning_rate,
                                 weight_decay = weight_decay)
    for epoch in range(num_epochs):
        for X, y in train_iter:
            optimizer.zero_grad()
            l = loss(net(X), y)
            l.backward()
            optimizer.step()
        train_ls.append(log_rmse(net, train_features, train_labels))
        if test_labels is not None:
            test_ls.append(log_rmse(net, test_features, test_labels))
    return train_ls, test_ls

K折交叉验证

本书在讨论模型选择的部分( 4.4节 ) 中介绍了[K折交叉验证], 它有助于模型选择和超参数调整。 我们首先需要定义一个函数,在 𝐾 折交叉验证过程中返回第 𝑖 折的数据。 具体地说,它选择第 𝑖 个切片作为验证数据,其余部分作为训练数据。 注意,这并不是处理数据的最有效方法,如果我们的数据集大得多,会有其他解决办法。

def get_k_fold_data(k, i, X, y):
    assert k > 1
    fold_size = X.shape[0] // k
    X_train, y_train = None, None
    for j in range(k):
        # idx将原始数据集的索引切片为 (j * fold_size) 到 ((j + 1) * fold_size),获得当前折数据
        idx = slice(j * fold_size, (j + 1) * fold_size)
        X_part, y_part = X[idx, :], y[idx]
        # 当前折的索引 j 与指定用于验证的索引 i 匹配,将该折的数据分配给验证集(X_valid 和 y_valid)
        if j == i:
            X_valid, y_valid = X_part, y_part
        # 如不匹配且训练集为空,则将该折的数据分配给训练集(X_train 和 y_train)
        elif X_train is None:
            X_train, y_train = X_part, y_part
        # 如不匹配且训练集不为空,则将该折的数据追加到训练集(X_train 和 y_train)中
        else:
            X_train = torch.cat([X_train, X_part], 0)
            y_train = torch.cat([y_train, y_part], 0)
    return X_train, y_train, X_valid, y_valid

当我们在𝐾折交叉验证中训练𝐾次后,[返回训练和验证误差的平均值]。

def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay,
           batch_size):
    train_l_sum, valid_l_sum = 0, 0
    for i in range(k):
        data = get_k_fold_data(k, i, X_train, y_train)
        net = get_net()
        train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,
                                   weight_decay, batch_size)
        # 索引[-1]获取最后一个epoch的损失
        train_l_sum += train_ls[-1]
        valid_l_sum += valid_ls[-1]
        if i == 0:
            d2l.plot(list(range(1, num_epochs + 1)), [train_ls, valid_ls],
                     xlabel='epoch', ylabel='rmse', xlim=[1, num_epochs],
                     legend=['train', 'valid'], yscale='log')
        print(f'折{i + 1},训练log rmse{float(train_ls[-1]):f}, '
              f'验证log rmse{float(valid_ls[-1]):f}')
    return train_l_sum / k, valid_l_sum / k

[模型选择]

在本例中,我们选择了一组未调优的超参数,并将其留给读者来改进模型。 找到一组调优的超参数可能需要时间,这取决于一个人优化了多少变量。 有了足够大的数据集和合理设置的超参数,$K$折交叉验证往往对多次测试具有相当的稳定性。 然而,如果我们尝试了不合理的超参数,我们可能会发现验证效果不再代表真正的误差。

k, num_epochs, lr, weight_decay, batch_size = 5, 100, 5, 0, 64
train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr,
                          weight_decay, batch_size)
print(f'{k}-折验证: 平均训练log rmse: {float(train_l):f}, '
      f'平均验证log rmse: {float(valid_l):f}')

输出结果:

折1,训练log rmse0.170504, 验证log rmse0.157253
折2,训练log rmse0.162439, 验证log rmse0.190316
折3,训练log rmse0.163755, 验证log rmse0.168293
折4,训练log rmse0.167951, 验证log rmse0.154497
折5,训练log rmse0.163372, 验证log rmse0.182880
5-折验证: 平均训练log rmse: 0.165604, 平均验证log rmse: 0.170648

请注意,有时一组超参数的训练误差可能非常低,但 𝐾 折交叉验证的误差要高得多, 这表明模型过拟合了。 在整个训练过程中,我们希望监控训练误差和验证误差这两个数字。 较少的过拟合可能表明现有数据可以支撑一个更强大的模型, 较大的过拟合可能意味着我们可以通过正则化技术来获益。

[提交Kaggle预测]

既然我们知道应该选择什么样的超参数, 我们不妨使用所有数据对其进行训练 (而不是仅使用交叉验证中使用的 1−1/𝐾 的数据)。 然后,我们通过这种方式获得的模型可以应用于测试集。 将预测保存在CSV文件中可以简化将结果上传到Kaggle的过程。

def train_and_pred(train_features, test_features, train_labels, test_data,
                   num_epochs, lr, weight_decay, batch_size):
    net = get_net()
    train_ls, _ = train(net, train_features, train_labels, None, None,
                        num_epochs, lr, weight_decay, batch_size)
    d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch',
             ylabel='log rmse', xlim=[1, num_epochs], yscale='log')
    print(f'训练log rmse:{float(train_ls[-1]):f}')
    # 将网络应用于测试集。
    preds = net(test_features).detach().numpy()
    # 将其重新格式化以导出到Kaggle
    test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
    submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)
    submission.to_csv('submission.csv', index=False)

如果测试集上的预测与 𝐾 倍交叉验证过程中的预测相似, 那就是时候把它们上传到Kaggle了。 下面的代码将生成一个名为submission.csv的文件。

train_and_pred(train_features, test_features, train_labels, test_data,
               num_epochs, lr, weight_decay, batch_size)

输出结果:

训练log rmse:0.162479

接下来,如下图中所示, 我们可以提交预测到Kaggle上,并查看在测试集上的预测与实际房价(标签)的比较情况。 步骤非常简单。

  • 登录Kaggle网站,访问房价预测竞赛页面。
  • 点击“Submit Predictions”按钮(在撰写本文时,该按钮位于右上侧)。
  • 点击页面底部虚线框中的“Upload Submission File”按钮,选择要上传的预测文件。
  • 点击页面底部的“Submission”按钮,即可查看结果。

小结

  • 真实数据通常混合了不同的数据类型,需要进行预处理。
  • 常用的预处理方法:将实值数据重新缩放为零均值和单位方法;用均值替换缺失值。
  • 将类别特征转化为指标特征,可以使我们把这个特征当作一个独热向量来对待。
  • 我们可以使用 𝐾 折交叉验证来选择模型并调整超参数。
  • 对数对于相对误差很有用。

独热向量(One-Hot Vector):

是指在机器学习和深度学习中用来表示分类数据的一种编码方式。它将每个类别映射为一个向量,其中该类别对应的元素为1,而其他元素为0。这种表示方式的优势在于能够清晰地表示类别之间的关系,而且在一些机器学习算法中常常是必需的。


练习

1. 把预测提交给Kaggle,它有多好?

解:

按教材中的代码提交后,Kaggle评估显示log rmse=0.16715,排名3199。

2. 能通过直接最小化价格的对数来改进模型吗?如果试图预测价格的对数而不是价格,会发生什么?

解:

直接最小化价格的对数,也即将预测价格改为预测价格的对数,等价于将目标函数改为对数MSE。由以下结果可见,模型并未改进,代码如下:

def train_4_10_2(net, train_features, train_labels, test_features, test_labels,
          num_epochs, learning_rate, weight_decay, batch_size):
    train_ls, test_ls = [], []
    train_iter = d2l.load_array((train_features, train_labels), batch_size)
    optimizer = torch.optim.Adam(net.parameters(),
                                 lr = learning_rate,
                                 weight_decay = weight_decay)
    for epoch in range(num_epochs):
        for X, y in train_iter:
            optimizer.zero_grad()
            clipped_preds = torch.clamp(net(X), 1, float('inf'))
            # 最小化价格的对数
            l = loss(torch.log(clipped_preds),
                           torch.log(y))
            l.backward()
            optimizer.step()
        train_ls.append(log_rmse(net, train_features, train_labels))
        if test_labels is not None:
            test_ls.append(log_rmse(net, test_features, test_labels))
    return train_ls, test_ls
def k_fold_4_10_2(k, X_train, y_train, num_epochs, learning_rate, weight_decay,
           batch_size):
    train_l_sum, valid_l_sum = 0, 0
    for i in range(k):
        data = get_k_fold_data(k, i, X_train, y_train)
        net = get_net()
        train_ls, valid_ls = train_4_10_2(net, *data, num_epochs, learning_rate,
                                   weight_decay, batch_size)
        train_l_sum += train_ls[-1]
        valid_l_sum += valid_ls[-1]
        if i == 0:
            d2l.plot(list(range(1, num_epochs + 1)), [train_ls, valid_ls],
                     xlabel='epoch', ylabel='rmse', xlim=[1, num_epochs],
                     legend=['train', 'valid'], yscale='log')
        print(f'折{i + 1},训练log rmse{float(train_ls[-1]):f}, '
              f'验证log rmse{float(valid_ls[-1]):f}')
    return train_l_sum / k, valid_l_sum / k
k, num_epochs, lr, weight_decay, batch_size = 5, 100, 5, 0, 64
train_l, valid_l = k_fold_4_10_2(k, train_features, train_labels, num_epochs, lr,
                          weight_decay, batch_size)
print(f'{k}-折验证: 平均训练log rmse: {float(train_l):f}, '
      f'平均验证log rmse: {float(valid_l):f}')

输出结果:

折1,训练log rmse12.028136, 验证log rmse12.040852
折2,训练log rmse12.029689, 验证log rmse12.034639
折3,训练log rmse2.386501, 验证log rmse2.405506
折4,训练log rmse2.169989, 验证log rmse2.130894
折5,训练log rmse2.368424, 验证log rmse2.381706
5-折验证: 平均训练log rmse: 6.196548, 平均验证log rmse: 6.198719

3. 用平均值替换缺失值总是好主意吗?提示:能构造一个不随机丢失值的情况吗?

解:

用平均值替换缺失值并不总是一个好主意,因为这可能会导致数据失真或者模型表现下降。替代缺失值的方法应该根据数据的特点和缺失值产生的原因来选择。

比如,一个数据集中的某个属性代表的是某种物质的浓度,这种物质在某个特定温度下会分解,因此在这个温度下所有样本的该属性值都是缺失的。在这种情况下,如果直接用平均值替换缺失值,则可能会导致数据严重失真。

4. 通过 𝐾 折交叉验证调整超参数,从而提高Kaggle的得分。

解:

尝试后获得的最优超参数如下,Kaggle评估显示log rmse=0.14735,排名上升到2204。

k, num_epochs, lr, weight_decay, batch_size = 5, 100, 10, 0, 32
train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr,
                          weight_decay, batch_size)
print(f'{k}-折验证: 平均训练log rmse: {float(train_l):f}, '
      f'平均验证log rmse: {float(valid_l):f}')

输出结果:

折1,训练log rmse0.132736, 验证log rmse0.143478
折2,训练log rmse0.129818, 验证log rmse0.146386
折3,训练log rmse0.128411, 验证log rmse0.142692
折4,训练log rmse0.134006, 验证log rmse0.137395
折5,训练log rmse0.126637, 验证log rmse0.166787
5-折验证: 平均训练log rmse: 0.130322, 平均验证log rmse: 0.147348

train_and_pred(train_features, test_features, train_labels, test_data,
               num_epochs, lr, weight_decay, batch_size)

输出结果:

训练log rmse:0.128169

5. 通过改进模型(例如,层、权重衰减和dropout)来提高分数。

解:

改进模型后代码如下,Kaggle评估显示log rmse=0.11959,排名上升到145(Ps:调了好久参数,dropout效果不好)。

def init_weights(m):
        if type(m) == nn.Linear:
            nn.init.normal_(m.weight, std=0.01)

def get_net_4_6_5():
        net = nn.Sequential(nn.Flatten(),
                nn.Linear(in_features,512),
                nn.ReLU(),
                nn.Linear(512, 1))

        net.apply(init_weights)

        return net
def k_fold_4_6_5(k, X_train, y_train, num_epochs, learning_rate, weight_decay,
           batch_size):
    train_l_sum, valid_l_sum = 0, 0
    for i in range(k):
        data = get_k_fold_data(k, i, X_train, y_train)
        net = get_net_4_6_5()
        train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,
                                   weight_decay, batch_size)
        train_l_sum += train_ls[-1]
        valid_l_sum += valid_ls[-1]
        if i == 0:
            d2l.plot(list(range(1, num_epochs + 1)), [train_ls, valid_ls],
                     xlabel='epoch', ylabel='rmse', xlim=[1, num_epochs],
                     legend=['train', 'valid'], yscale='log')
        print(f'折{i + 1},训练log rmse{float(train_ls[-1]):f}, '
              f'验证log rmse{float(valid_ls[-1]):f}')
    return train_l_sum / k, valid_l_sum / k
k, num_epochs, lr, weight_decay, batch_size = 5, 100, 0.01, 300, 32
train_l, valid_l = k_fold_4_6_5(k, train_features, train_labels, num_epochs, lr,
                          weight_decay, batch_size)
print(f'{k}-折验证: 平均训练log rmse: {float(train_l):f}, '
      f'平均验证log rmse: {float(valid_l):f}')

输出结果:

折1,训练log rmse0.110022, 验证log rmse0.125379
折2,训练log rmse0.102276, 验证log rmse0.142099
折3,训练log rmse0.107157, 验证log rmse0.134367
折4,训练log rmse0.110210, 验证log rmse0.112558
折5,训练log rmse0.103599, 验证log rmse0.149600
5-折验证: 平均训练log rmse: 0.106653, 平均验证log rmse: 0.132800

def train_and_pred_4_6_5(train_features, test_features, train_labels, test_data,
                   num_epochs, lr, weight_decay, batch_size):
    net = get_net_4_6_5()
    train_ls, _ = train(net, train_features, train_labels, None, None,
                        num_epochs, lr, weight_decay, batch_size)
    d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch',
             ylabel='log rmse', xlim=[1, num_epochs], yscale='log')
    print(f'训练log rmse:{float(train_ls[-1]):f}')
    # 将网络应用于测试集。
    preds = net(test_features).detach().numpy()
    # 将其重新格式化以导出到Kaggle
    test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
    submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)
    submission.to_csv('submission.csv', index=False)
train_and_pred_4_6_5(train_features, test_features, train_labels, test_data,
               num_epochs, lr, weight_decay, batch_size)

训练结果:

训练log rmse:0.109655

6. 如果我们没有像本节所做的那样标准化连续的数值特征,会发生什么?

解:

可能导致模型训练不稳定、性能下降、泛化能力差:未标准化的特征可能具有不同的尺度,这可能导致某些特征在模型训练过程中权重过大或过小,使得模型的收敛速度变慢,甚至无法收敛,标准化可以使得以确保所有特征对模型的影响是均衡的,从而提高算法的性能、收敛速度以及泛化能力。

可能导致数值问题:如果数据的特征值范围非常广泛,可能会导致数值溢出或者精度问题。标准化可以减少这些问题的发生,确保计算的稳定性和准确性。

可能导致特征重要性误判:未标准化的特征可能会导致对特征重要性的误判。模型可能会错误地认为某些特征对目标变量的影响更大,而实际上这只是因为该特征的值范围较大而已。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/696080.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Keil软件仿真的使用

一、软件的初始化设置 初始设置可以按照下图,这里我使用的是STM32F103C8T6,所以单片机型号为STM32F103C8,这个设置在Debug目录下。然后进行时钟的设置,我们板上晶振为8M,这里将时钟改为8. 或许有人想问如果是别的型号单…

Vue3学习记录第三天

Vue3学习记录第三天 背景说明学习记录Vue3中shallowReactive()和shallowRef()Vue3中toRaw()和markRaw()前端...语法Vue3中readonly()和shallowReadonly()函数 背景 之前把Vue2的基础学了, 这个课程的后面有简单介绍Vue3的部分. 学习知识容易忘, 这里仅简答做一个记录. 内容都很…

# RocketMQ 实战:模拟电商网站场景综合案例(一)

RocketMQ 实战:模拟电商网站场景综合案例(一) 一、内容介绍 1、案例介绍: 1.1 业务分析 1)下单业务 2)支付业务 1.2 问题分析 2、技术分析 2.1 技术选型: 1)SpringBoot 2&…

Zynq7000 系列FPGA模块化仪器

• 基于 XilinxXC7Z020 / 010 / 007S • 灵活的模块组合 • 易于嵌入的紧凑型外观结构 • 高性能的 ARM Cortex 处理器 • 成熟的 FPGA 可编程逻辑 ,基于 IP 核的软件库 FPGA 控制器 Zynq7000 系列模块是基于 Xilinx XC7Z020/010/007S 全可编程片上系统 (SoC) 的…

【PPT技巧】PPT文件设置了修改权限,如何取消权限编辑文件?

不知道大家在使用PPT文件的时候,是否遇到过下面的提示框,这就是PPT文件设置了修改权限,只有输入密码才可以编辑文件。 如果我们没有输入密码,以只读方式进入,那么我们会发现功能栏中的按钮全是灰色,无法使用…

Vue3【二】 VSCode需要安装的Vue语法插件

VSCode需要安装的 适配Vue3的插件 Vue-Official插件安装

DeepSORT(目标跟踪算法)中的马氏距离详解(很详细)

DeepSORT(目标跟踪算法)中的马氏距离详解(很详细) flyfish 马氏距离的公式是由印度统计学家【普拉萨纳钱德拉马哈拉诺比斯(Prasanta Chandra Mahalanobis)】)(好长的名字&#xff…

STM32F103C8T6 HAL库 USART1 DMA方式接收数据

前言: 前面的两篇文章都说关于发送的,HAL库发送数据可以调用现成的函数,而接收数据,现成函数不太好用。这里为了记录了一下自己参考了网上几个大佬的代码,整理了一下USART1 DMA方式接受数据的代码,…

【python】OpenCV—Histogram Matching(9.2)

学习来自OpenCV基础(17)基于OpenCV、scikit-image和Python的直方图匹配 文章目录 直方图匹配介绍scikit-image 中的直方图匹配小试牛刀风格迁移 直方图匹配介绍 直方图匹配(Histogram Matching)是一种图像处理技术,旨…

一文详解大模型微调全流程

节前,我们星球组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学. 针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。 汇总合集&…

11-数组与指针深入理解——题型理解

11-数组与指针深入理解——题型理解 文章目录 11-数组与指针深入理解——题型理解一、理解题1二、理解题二三、理解题三四、理解题四五、理解题五六、理解题六 一、理解题1 #include <stdio.h>int main(void) {int (*p)[5] NULL; // 定义一个指向 拥有5个整型数据的数组…

Tessy学习系列(三):单元测试——官方例程isValueInRange

一、工程创建 &#xff08;1&#xff09;新建工程 注意&#xff1a;工程名称以及路劲不能包含空格和中文 &#xff08;2&#xff09;新建测试集与单元测试模块 新建测试集 新建单元测试模块 设置测试模块为单元测试模块并选择GNU GCC编译器如果需要其他的编译器&#xff0c;…

力扣每日一题 6/10

881.救生艇[中等] 题目&#xff1a; 给定数组 people 。people[i]表示第 i 个人的体重 &#xff0c;船的数量不限&#xff0c;每艘船可以承载的最大重量为 limit。 每艘船最多可同时载两人&#xff0c;但条件是这些人的重量之和最多为 limit。 返回 承载所有人所需的最小船…

kubesz(一键安装k8s)

引言 Kubernetes&#xff08;K8s&#xff09;是一个开源的容器编排系统&#xff0c;用于自动化部署、扩展和管理容器化应用程序。kubeasz 是一个用于快速搭建 Kubernetes 高可用集群的项目&#xff0c;它基于 Ansible&#xff0c;通过提供一套简单、易用的配置&#xff0c;使得…

杨校老师项目之基于SpringBoot的理发店的预约管理系统

原系统是SSMJSP页面构成&#xff0c;先被修改为SpringBoot JSP页面 自助下载渠道: https://download.csdn.net/download/kese7952/89417001&#xff0c;或 点我下载 理发师信息&#xff1a; 理发师详细信息 公告信息 员工登录&#xff1a; 管理员登录

94、二叉树的迭代遍历

实现对二叉树的前后序非递归遍历 题解&#xff1a; 递归的实现就是&#xff1a;递去&#xff0c;归来。每一次递归调用都会把函数的局部变量、参数值和返回地址等压入调用栈中&#xff0c;然后递归返回的时候&#xff0c;从栈顶弹出上一次递归的各项参数&#xff0c;所以这就是…

有点好玩的python运维脚本

python运维脚本 1. 常用端口扫描2. 文件整理 1. 常用端口扫描 在计算机网络中&#xff0c;端口是一个通信端点&#xff0c;允许不同的进程或服务通过网络连接和交换数据。端口通过数值来标识&#xff0c;并与特定的协议相关联。未采取适当安全措施而保持端口开放&#xff0c;可…

上位机图像处理和嵌入式模块部署(f407 mcu vs h750)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 在目前工业控制上面&#xff0c;f103和f407是用的最多的两种stm32 mcu。前者频率低一点&#xff0c;功能少一点&#xff0c;一般用在低端的嵌入式设…

搞懂银行的各类号码 — Account Number, Routing Number 和 Swift Code

1. 前言2. 名词解释 2.1. Debit Card Number 储蓄卡卡号2.2. Account Number 账户号码2.3. Routing Number 路由号码2.4. SWIFT Code SWIFT 号码3. 查找信息 3.1. 支票3.2. 网上银行3.3. 手机银行4. SWFIT Code 4.1. 看懂 SWIFT Code4.2. 询问银行4.3. Google 大神4.4. 部分常用…

GitLab代码导出 gitlab4j-api 实现

目录 GitLab简介 GitLab 的主要特点包括&#xff1a; GitLab代码导出 gitlab4j-api 添加 gitlab4j-api 依赖 使用 gitlab4j-api 获取特定命名空间下的所有项目 说明 注意事项 GitLab简介 GitLab 是一个开源的代码仓库和协作平台&#xff0c;主要用于版本控制和源代码管理…