# [0619] Task01 绪论、马尔可夫过程、动态规划

  • easy-rl PDF版本 笔记整理 P1 - P2
  • joyrl 比对 补充 P1 - P3
  • 相关 代码 整理

在这里插入图片描述

最新版PDF下载
地址:https://github.com/datawhalechina/easy-rl/releases
国内地址(推荐国内读者使用)
链接: https://pan.baidu.com/s/1isqQnpVRWbb3yh83Vs0kbw 提取码: us6a

easy-rl 在线版本链接 (用于 copy 代码)
参考链接 2:https://datawhalechina.github.io/joyrl-book/

其它:
【勘误记录 链接】
——————
5、深度强化学习基础 ⭐️
开源内容:https://linklearner.com/learn/summary/11
——————————

在这里插入图片描述

在这里插入图片描述
即时反馈 难以获取
延迟奖励 增加了 网络训练的难度

强化学习 输入: 序列数据

探索 exploration 利用 exploitation

在机器学习中, 如果观测数据有非常强的关联,会使得训练非常不稳定。

——> 独立同分布

轨迹 trajectory τ = ( s 0 , a 0 , s 1 , a 1 , ⋯   ) \tau=(s_0,a_0,s_1,a_1,\cdots) τ=(s0,a0,s1,a1,)

轨迹到底包不包含 奖励 reward 呢?

回合 episode 或 试验 (trial)

2012 年 AlexNet 卷积神经网络
端到端: 特征提取 + 分类

GPU 更快地做更多的试错尝试

智能体 走路、机械臂学习一个统一的抓取算法

先在虚拟环境中得到一个很好的智能体, 再应用到真实的机器人中。

  • 真实的机械臂易损坏且昂贵, 无法大批购买。

在这里插入图片描述

最大化 累积奖励的期望

即时奖励 和 延迟奖励

当智能体能够观察到环境的所有状态时,强化学习通常 建模成 一个马尔可夫决策过程 (Markov decision process,MDP)的问题

部分可观测马尔可夫决策过程 ( S , A , T , R , Ω , O , γ ) (S, A, T, R, \Omega, O, \gamma) (S,A,T,R,Ω,O,γ)

  • 状态 S S S
  • 动作 A A A
  • 状态转移概率 T ( s ′ ∣ s , a ) T(s^\prime|s, a) T(ss,a)
  • 奖励 R R R
  • 观测概率 Ω ( o ∣ s , a ) \Omega(o|s, a) Ω(os,a)
  • 观测空间 O O O
  • 折扣因子 γ \gamma γ

离散动作
连续动作: 机器人 360° 任意角度移动

策略增加随机性, 可以更好地探索环境,避免被对手预测下一步动作。

状态值 v π ( s ) = E π [ G t ∣ s t = s ] = E π [ ∑ k = 0 ∞ γ k ⋅ r t + k + 1 ∣ s t = s ]    ∀   s ∈ S     v_\pi(s)=\mathbb E_\pi[G_t|s_t=s]=\mathbb E_\pi\Big[\sum\limits_{k=0}^{\infty}\gamma^k·r_{t+k+1}|s_t=s\Big]~~\forall~s\in\cal S~~~ vπ(s)=Eπ[Gtst=s]=Eπ[k=0γkrt+k+1st=s]   sS    注意 从 r t + 1 r_{ t + 1} rt+1 开始累积

动作值 q π ( s , a ) = E π [ G t ∣ s t = s , a t = a ] = E π [ ∑ k = 0 ∞ γ k ⋅ r t + k + 1 ∣ s t = s , a t = a ]          q_\pi(s, a)=\mathbb E_\pi[G_t|s_t=s, a_t=a]=\mathbb E_\pi\Big[\sum\limits_{k=0}^\infty\gamma^k·r_{t+k+1}|s_t=s, a_t=a\Big]~~~~~~~~ qπ(s,a)=Eπ[Gtst=s,at=a]=Eπ[k=0γkrt+k+1st=s,at=a]         将 动作 a a a 加入考量范围, 其它同上

状态转移概率 p ( s t + 1 = s ′ ∣ s t = s , a t = a ) p(s_{t+1}=s^\prime|s_t=s, a_t=a) p(st+1=sst=s,at=a)

总回报 R ( s , a ) = E [ r t + 1 ∣ s t = s , a t = a ] R(s, a)=\mathbb E[r_{t+1}|s_t=s, a_t=a] R(s,a)=E[rt+1st=s,at=a]

value-based: 维护一个关于值 的表格 或函数, 直接选取 值 最大的动作。

policy-based:根据 策略 确定 动作

是否 对环境 进行建模了?
model-based 状态转移
model-free 值函数 和 策略函数

模型 不易 确定

智能体 执行行动前, 能否对下一步的状态和奖励进行预测,若可以, 则可采用 有模型学习。

免模型 数据

两亿帧游戏画面。

利用: 直接采取已知的奖励最大的动作

Gym 仿真库_OpenAI

OpenAI 的 Gym 库是一个环境仿真库

离散控制场景(输出的动作是可数的,比如Pong游戏中输出的向上或向下动作)一般使用雅达利环境评估;
连续控制场景(输出的动作是不可数的,比如机器人走路时不仅有方向,还有角度,角度就是不可数的,是一个连续的量 )一般使用 MuJoCo 环境评估。
Gym Retro是对 Gym 环境的进一步扩展,包含更多的游戏。

使用 env = gym.make(环境名) 调用模拟的环境
使用 env.reset() 初始化环境,
使用 env.step(动作) 执行一步 动作,
使用 env.render() 环境渲染,
使用 env.close() 关闭环境。

相关库安装

pip install gym==0.25.2
pip install pygame
import gym

在刚开始测试强化学习的时候,我们可以选择这些简单环境,因为强化学习在这些环境中可以在一两分钟之内见到效果。

在这里插入图片描述
Acrobot 需要让一个双连杆机器人立起来;
CartPole 需要通过控制一辆小车,让杆立起来;
MountainCar 需要通过前后移动车,让它到达旗帜的位置。

包含的 仿真环境 查看

from gym import envs
env_specs = envs.registry.all()
envs_ids = [env_spec.id for env_spec in env_specs]
print(envs_ids)

在这里插入图片描述

车杆平衡 CartPole-v0

import gym  # 导入 Gym 的 Python 接口环境包
env = gym.make('CartPole-v0')  # 构建实验环境
env.reset()  # 重置一个回合
for _ in range(1000):
    env.render()  # 显示图形界面
    action = env.action_space.sample() # 从动作空间中随机选取一个动作
    env.step(action) # 用于提交动作,括号内是具体的动作
env.close() # 关闭环境
  • 报错, 暂时不清楚 是啥问题。。

在这里插入图片描述

——> Colab 可以跑, 不报错。

import gym  
env = gym.make('CartPole-v0')  
env.reset()  
for _ in range(1000):
    env.render()  
    action = env.action_space.sample() 
    observation, reward, done, info = env.step(action)
    print(observation)
env.close()   
  • 和之前的报错一样
    ——> Colab 可以跑, 能输出数据,就是 env.render() 没反应。

——> 需要自己可视化。

如何 与 gym 库 交互。 MountainCar-v0 【车上 山顶】

import gym
env = gym.make('MountainCar-v0')
print('观测空间 = {}'.format(env.observation_space))
print('动作空间 = {}'.format(env.action_space))
print('观测范围 = {} ~ {}'.format(env.observation_space.low,
        env.observation_space.high))
print('动作数 = {}'.format(env.action_space.n))

在这里插入图片描述
在 Gym 库中,
环境的观测空间env.observation_space 表示,
动作空间env.action_space 表示。
离散空间 gym.spaces.Discrete 类表示,
连续空间用 gym.spaces.Box 类表示。
对于离散空间,Discrete (n) 表示可能取值的数量为 n;
对于连续空间,Box 类实例成员中的 lowhigh 表示每个浮点数的取值范围。

import gym
import numpy as np


class SimpleAgent:
    def __init__(self, env):
        pass
    
    def decide(self, observation): # 决策
        position, velocity = observation
        lb = min(-0.09 * (position + 0.25) ** 2 + 0.03,
                0.3 * (position + 0.9) ** 4 - 0.008)
        ub = -0.07 * (position + 0.38) ** 2 + 0.07
        if lb < velocity < ub:
            action = 2
        else:
            action = 0
        return action # 返回动作

    def learn(self, *args): # 学习
        pass
    

def play(env, agent, render=False, train=False): # 环境,  render 是否图示,  train: 学习时 为 True, 测试时 为 False
    episode_reward = 0. # 记录回合总奖励,初始化为0
    observation = env.reset() # 重置游戏环境,开始新回合
    while True: # 不断循环,直到回合结束
        if render: # 判断是否显示
            env.render() # 显示图形界面,图形界面可以用 env.close() 语句关闭
        action = agent.decide(observation)
        next_observation, reward, done, _ = env.step(action) # 执行动作
        episode_reward += reward # 收集回合奖励
        if train: # 判断是否训练智能体
            agent.learn(observation, action, reward, done) # 学习
        if done: # 回合结束,跳出循环
            break
        observation = next_observation
    return episode_reward # 返回回合总奖励


env = gym.make('MountainCar-v0')
env.seed(3) # 设置随机种子,让结果可复现
agent = SimpleAgent(env)
print('观测空间 = {}'.format(env.observation_space))
print('动作空间 = {}'.format(env.action_space))
print('观测范围 = {} ~ {}'.format(env.observation_space.low,
        env.observation_space.high))
print('动作数 = {}'.format(env.action_space.n))

episode_reward = play(env, agent, render=True)
print('回合奖励 = {}'.format(episode_reward))

episode_rewards = [play(env, agent) for _ in range(100)]   #  100 个 回合 !
print('平均回合奖励 = {}'.format(np.mean(episode_rewards)))

  • 和之前的报错一样
    ——> Colab

在这里插入图片描述

测试智能体在 Gym 库中某个任务的性能时,出于习惯使然,学术界一般最关心 100 个回合的平均回合奖励。
对于有些任务,还会指定一个参考的回合奖励值,当连续 100 个回合的奖励大于指定的值时,则认为该任务被解决了。

SimpleAgent 类对应策略的平均回合奖励在−110 左右,而对于小车上山任务,只要连续 100 个回合的平均回合奖励大于 -110,就可以认为该任务被解决了。

补充: Gym 升级版本 Gymnasium

Gym 库官网链接

链接: 强化学习算法测试 简单环境

在这里插入图片描述

Gymnasium GitHub 链接

备选的报错解决方案

pip install gymnasium

官方示例:

import gymnasium as gym
env = gym.make("CartPole-v1")

observation, info = env.reset(seed=42)
for _ in range(1000):
    action = env.action_space.sample()
    observation, reward, terminated, truncated, info = env.step(action)

    if terminated or truncated:
        observation, info = env.reset()
env.close()

补充: Jupyter 中显示 gym 渲染窗口及保存为 gif _ matplotlib

参考链接

Colab:

import numpy as np
import time 
import gym
import matplotlib.pyplot as plt 
from matplotlib import animation 
%matplotlib inline
from IPython import display


# 显示gym渲染窗口的函数,在运行过程中将 env.render() 替换为 show_state(env, step, info).
def show_state(env, step=0, info=""):
    plt.figure(3)
    plt.clf()
    plt.imshow(env.render(mode='rgb_array'))
    plt.title("Step: %d %s" % (step, info))
    plt.axis('off')

    display.clear_output(wait=True)
    display.display(plt.gcf())

def display_frames_as_gif(frames, SavePath = './test.gif'):
    patch = plt.imshow(frames[0])
    plt.axis('off')
    def animate(i):
        patch.set_data(frames[i])

    anim = animation.FuncAnimation(plt.gcf(), animate, frames = len(frames), interval=1)
    anim.save(SavePath, writer='ffmpeg', fps=30)


############################################

# 运行环境实例 1

import gym

frames=[]
env = gym.make('CartPole-v1')
info = env.reset() # 重置环境 

for step in range(100):
    frames.append(env.render(mode='rgb_array')) # 加载各个时刻图像到帧
    show_state(env, step, info = 'CartPole_test') # 显示渲染窗口
    action = env.action_space.sample() # 随机动作,需要学习的动作模型
    # action=np.random.choice(2) # 随机返回: 0 小车向左,1 小车向右

    observation,reward,done,info = env.step(action) # 执行动作并返回结果

env.close()

display_frames_as_gif(frames, SavePath = './CartPole_result.gif') # 保存运行结果动图

在这里插入图片描述
Colab + gym

!pip install -q swig
!pip install box2d==2.3.2 gym[box2d]==0.25.2 box2d-py pyvirtualdisplay tqdm numpy==1.22.4
!pip install box2d==2.3.2 box2d-kengz
import numpy as np
import time 
import gym
import matplotlib.pyplot as plt 
from matplotlib import animation 
%matplotlib inline
from IPython import display


# 显示gym渲染窗口的函数,在运行过程中将 env.render() 替换为 show_state(env, step, info).
def show_state(env, step=0, info=""):
    plt.figure(3)
    plt.clf()
    plt.imshow(env.render(mode='rgb_array'))
    plt.title("Step: %d %s" % (step, info))
    plt.axis('off')

    display.clear_output(wait=True)
    display.display(plt.gcf())

def display_frames_as_gif(frames, SavePath = './test.gif'):
    patch = plt.imshow(frames[0])
    plt.axis('off')
    def animate(i):
        patch.set_data(frames[i])

    anim = animation.FuncAnimation(plt.gcf(), animate, frames = len(frames), interval=1)
    anim.save(SavePath, writer='ffmpeg', fps=30)


############################################

# 运行环境实例2

import gym

frames=[]
env = gym.make("LunarLander-v2")
env.reset()
env.action_space.seed(42)

observation, info = env.reset(seed=42, return_info=True)

for step in range(100):
    frames.append(env.render(mode='rgb_array')) # 加载各个时刻图像到帧
    # env.render(mode='human') # 这行不能和env定义写在一行,否则会报错,原因不明
    time.sleep(0.1) # 控制显示速度变慢
    show_state(env, step, info="LunarLander_test")
    observation, reward, done, info = env.step(env.action_space.sample())
    # observation, reward, terminated, truncated, info = env.step(env.action_space.sample())
    if done:
    # if terminated or truncated:
        observation, info = env.reset(return_info=True)

env.close()
display_frames_as_gif(frames, SavePath = './LunarLander_result.gif') # 保存运行结果动图

在这里插入图片描述

  • 通过 pygame 可视化
  • Xvfb 可参考链接

————————————————

强化学习:环境、动作、奖励。
强化学习 的使用场景: 多序列决策问题。

第 2 章 马尔可夫决策过程

状态非常多 的 ( s , a , r ) (s, a,r) (s,a,r) 过程 求解: 迭代
1、动态规划
2、蒙特卡洛 (采样)
3、时序差分 (TD-learning) = 蒙特卡洛 + 动态规划

在这里插入图片描述

bootstrapping 自举: 根据其它估计值 来更新 估计值。

在这里插入图片描述

动态规划: 最优子结构 + 重叠子问题

策略迭代:
1、策略评估
2、策略改进

值迭代 中间过程 的策略 和 值 是没有意义的。
策略迭代的每一次迭代的结果都是有意义的, 都是一个完整的策略。

在这里插入图片描述

JoyRL

试错学习

序列决策

在机器人中实现强化学习 的成本 比较高:
1、观测环境的状态 需要 大量传感器
2、试错学习 的实验成本 高昂
3、训练过程中 决策失误造成设备损坏

仿真

金融: 根据价格变化进行股票买卖决策, 最大化资产。

逆强化学习 【奖励函数 也通过学习来确定】。 专家数据的噪声

探索: 避免局部最优

离线强化学习

在离线环境中训练一个世界模型,然后将世界模型部署到在线环境中进行决策。
世界模型的思路是将环境分为两个部分,一个是世界模型,另一个是控制器。世界模型的作用是预测下一个状态,而控制器的作用是根据当前的状态来决策动作
如何提高世界模型的预测精度?

多任务强化学习
在实际应用中,智能体往往需要同时解决多个任务,例如机器人需要同时完成抓取、搬运、放置等任务,而不是单一的抓取任务。在这种情况下,如何在多个任务之间做出权衡是一个难题。

目前比较常用的方法有 联合训练分层强化学习 等等。

  • 联合训练的思路是将多个任务的奖励进行加权求和,然后通过强化学习来学习一个策略
  • 分层强化学习的思路是将多个任务分为两个层次,一个是高层策略,另一个是低层策略。
    高层策略的作用是决策当前的任务,而低层策略的作用是决策当前任务的动作。这样就可以通过强化学习来学习高层策略和低层策略,从而解决多任务强化学习的问题。
    如何提高 高层策略 的决策精度?

———————————

随机变量 大写

马尔可夫性质:

P ( S t + 1 ∣ S t ) = P ( S t + 1 ∣ S 0 , S 1 , ⋯   , S t − 1 , S t ) P(S_{t+1}|S_t)=P(S_{t+1}|\textcolor{blue}{S_0, S_1, \cdots, S_{t-1}},S_t) P(St+1St)=P(St+1S0,S1,,St1,St)

在给定历史状态 S 0 , S 1 , ⋯   , S t − 1 , S t S_0, S_1, \cdots, S_{t-1},S_t S0,S1,,St1,St 的情况下, 某个状态的未来只和当前状态 S t S_t St 有关, 与历史状态无关。

AlphaGO 算法:用深度学习神经网络来表示当前的棋局,并用蒙特卡洛搜索树等技术来模拟玩家的策略和未来可能的状态,来构建一个新的决策模型

状态转移概率 : 当前状态 s s s ——> 下一状态 s ′ s^\prime s

P s s ′ = P ( S t + 1 = s ′ ∣ S t = s ) P_{ss^\prime}=P(S_{t+1}=s^\prime|S_t=s) Pss=P(St+1=sSt=s)

动态规划问题 的 3 个 性质:
1、最优化原理
2、无后效性 【某阶段状态一旦确定,就不受这个状态以后决策的影响。马尔可夫性质】
3、有重叠子问题

状态值函数: V π ( s ) = E π ( G t ∣ S t = s ) V_\pi(s)=\mathbb E_{\pi}(G_t|S_t=s) Vπ(s)=Eπ(GtSt=s)

  • 从特定状态出发, 按照某个策略 π \pi π 【一般带一定随机性】进行决策所能得到的回报期望值。

动作值函数: Q π ( s , a ) = E π [ G t ∣ s t = s , a t = a ] Q_\pi(s, a)=\mathbb E_\pi [G_t|s_t=s, a_t=a] Qπ(s,a)=Eπ[Gtst=s,at=a]

V π ( s ) = ∑ a ∈ A π ( a ∣ s ) Q π ( s , a ) V_\pi(s)=\sum\limits_{a\in\mathcal A}\pi(a|s)Q_\pi(s, a) Vπ(s)=aAπ(as)Qπ(s,a)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/725356.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

lib9-03 配置基于时间的 ACL

实验&#xff1a;配置基于时间的 ACL 1、实验目的 通过本实验可以掌握定义 time-range 的方法基于时间 ACL 的配置和调试方法 2、实验拓扑 实验拓扑如下图所示。本实验要求只允许主机 PC1 在周一到周五每天的 8&#xff1a;00-17&#xff1a;00 访问路由器 R3 的Telnet 服务…

Python的三种方式显示图片

from PIL import Image import numpy as np im Image.open("img.png") #方法一&#xff1a;使用PIL库显示图片 a np.array(im) imImage.fromarray(a) im.show() import matplotlib.pyplot as plt #方法二&#xff1a;使用matplotlib库显示图片 plt.imshow(a) plt.s…

Covalent实现对1000亿笔链上交易解析,支持AI长期数据可用性

在区块链与人工智能&#xff08;AI&#xff09;交汇处&#xff0c;讨论往往集中于去中心化推理和去中心化训练等方面。然而&#xff0c;这一数据的关键组成部分却一直未得到足够的重视。一个主要问题是&#xff1a;我们如何保护 AI 模型中的数据不受偏见和操纵的影响&#xff1…

linux环境编程基础学习

Shell编程&#xff1a; 相对的chmod -x xx.sh可以移除权限 想获取变量的值要掏点dollar&#xff08;&#xff04;&#xff09; 多位的话要加个花括号 运算&#xff1a;expr 运算时左右两边必须要加空格 *号多个含义必须加转义符 双引号可以加反单&#xff0c;但是发过来就不行 …

企业微信,机器人定时提醒

场景&#xff1a; 每天定时发送文字&#xff0c;提醒群成员事情&#xff0c;可以用机器人代替 人工提醒。 1&#xff09;在企业微信&#xff0c;创建机器人 2&#xff09;在腾讯轻联&#xff0c;创建流程&#xff0c;选择定时任务&#xff0c;执行操作&#xff08;企业微信机…

秋招突击——6/19——新作{括号生成、合并K个排序链表}

文章目录 引言新作括号生成个人实现实现时遇到的问题实现代码 参考思路实现代码 合并K个有序链表个人实现实现代码 参考实现实现代码 总结 引言 今天把第二篇论文投了&#xff0c;后续有审稿意见再说&#xff0c;然后在进行修改的。后续的生活要步入正轨了&#xff0c;每天刷题…

FreeRTOS源码分析

目录 1、FreeRTOS目录结构 2、核心文件 3、移植时涉及的文件 4、头文件相关 4.1 头文件目录 4.2 头文件 5、内存管理 6、入口函数 7、数据类型和编程规范 7.1 数据类型 7.2 变量名 7.3 函数名 7.4 宏的名 1、FreeRTOS目录结构 使用 STM32CubeMX 创建的 FreeRTOS 工…

Ubuntu服务器搭建Git远程仓库

本文所述方法适用于小型团队在局域网环境中使用Git进行代码版本管理。 1. 安装Git 打开终端(Ctrl + Alt + T) ,输入以下命令: sudo apt update #更新软件包列表信息 sudo apt install git #安装Git 验证Git是否安装成功,可以查看Git版本: git --version 也需…

shell中的流程控制

条件判断在流程控制中的重要性 有了条件判断才能进行if判断即分支流程&#xff0c;才能进行case的多分支流程&#xff0c;才能进行for循环和while循环。 单分支流程判断 如上图所示&#xff0c;在shell编程中常使用英文状态下的分号来在Linux控制台一次性执行多条命令&#x…

无线领夹麦克风哪个牌子好用?一文揭秘哪种领夹麦性价比最高!

​无线领夹麦克风&#xff0c;无疑是现代音频技术的杰出代表。它摆脱了传统有线麦克风的束缚&#xff0c;让声音的传播更加自由、灵活。无论是追求极致音质的音乐爱好者&#xff0c;还是需要高效沟通的商务人士&#xff0c;无线领夹麦克风都能满足你的需求&#xff0c;让你的声…

513、找二叉树左下角的值

题解&#xff1a;层序遍历简单&#xff0c;此篇记录递归法&#xff0c;要注意左下角的值并不一定是左叶子节点&#xff0c;遍历思路形象化就是按先左后右的顺序遍历每一条分支&#xff0c;若遍历到叶子结点&#xff0c;看此时深度有没有超过之前的值&#xff0c;超过了就记录下…

Jlink下载固件到RAM区

Jlink下载固件到RAM区 准备批处理搜索exe批处理调用jlink批处理准备jlink脚本 调用执行 环境&#xff1a;J-Flash V7.96g 平台&#xff1a;arm cortex-m3 准备批处理 搜索exe批处理 find_file.bat echo off:: 自动识别脚本名和路径 set "SCRIPT_DIR%~dp0" set &qu…

TIME_WAIT的危害

前言 该文章主要讨论下TIME_WAIT的存在意义和潜在危害&#xff0c;以及解决措施。 具体内容 首先看一下下面这幅图 这幅图来自《TCP IP详解卷1&#xff1a;协议 原书第2版中文》TCP状态变迁图。 TIME_WAIT存在意义 可靠的终止TCP连接。 保证让迟来的TCP报文有足够的时间被…

数据库 | 试卷四

1.数据库系统的特点是 数据共享、减少数据冗余、数据独立、避免了数据不一致和加强了数据保护 2.关系模型的数据结构是二维表结构 3.聚簇索引 cluster index 4. 这里B&#xff0c;C都是主属性&#xff0c;所以B->C不是非主属性对码的部分函数依赖 候选键&#xff08;AC&a…

光电液位传感器在净水器领域的应用优势有哪些?

光电液位传感器作为一种先进的液位检测技术&#xff0c;在净水器领域有着显著的应用优势。具有高精度的特点&#xff0c;能够精确地检测水位变化&#xff0c;保证水处理过程的稳定性和效率。 传统的浮球式传感器可能存在精度偏差或者在长期使用中需要维护和更换的问题&#xf…

nginx+tomcat负载均衡、动静分离群集【☆☆☆☆☆】

Nginx是一款非常优秀的HTTP服务器软件&#xff0c;性能比tomcat更优秀&#xff0c;它支持高达50 000个并发连接数&#xff0c;拥有强大的静态资源处理能力&#xff0c;运行稳定&#xff0c;内存、CPU等系统资源消耗非常低。目前很多大型网站都应用Nginx服务器作为后端网站程序的…

机器学习课程复习——隐马尔可夫

不考计算题 Q:概率图有几种结构? 条件独立性的公式? 顺序结构发散结构汇总结构Q:隐马尔可夫模型理解? 概念 集合:状态集合、观测集合 序列:状态序列、观测序列

你不知道的MySQL备份和还原技巧,速来学习!

01、mysql备份数据库 1、mysql备份单个数据库 #mysql备份某个库格式&#xff1a; mysqldump -h主机名 -P端口 -u用户名 -p"密码" --database 数据库名 > 文件名.sql#实例&#xff1a;mysql备份某个库&#xff1a; mysqldump -h10.*.*.9 -P3306 -uroot -p"密…

闹大了!高考作文“人工智能与AI”引发争议,专家喊话,部分考生家长无奈,直呼:“太不公平了!这哪里是考作文,分明是在考城乡差距啊!”

闹大了&#xff01;高考作文“人工智能与AI”引发争议&#xff0c;专家喊话&#xff0c;部分考生家长无奈&#xff0c;直呼&#xff1a;“太不公平了&#xff01;这哪里是考作文&#xff0c;分明是在考城乡差距啊&#xff01;” ​高考&#xff0c;本该是最公平的战场&#xff…

leetcode21 合并两个有序单链表

将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例 1&#xff1a; 输入&#xff1a;l1 [1,2,4], l2 [1,3,4] 输出&#xff1a;[1,1,2,3,4,4]示例 2&#xff1a; 输入&#xff1a;l1 [], l2 [] 输出&#xff1a;[]示例…