C语言 树与二叉树基础部分

树与二叉树基础部分

  • 树的基础概念
  • 二叉树的性质
  • 二叉树的遍历
    • 前序遍历
    • 中序遍历
    • 后序遍历
    • 层序遍历
    • 根据遍历结果恢复二叉树
  • 二叉树的创建
    • 第一种
    • 第二种
  • 二叉树的其他典型操作
    • 查找指定元素(一般二叉树)
    • 二叉树的高度(深度)
    • 二叉树的拷贝
    • 二叉树的销毁
    • 二叉树的节点个数
    • 第k层的节点个数
    • 二叉树叶子结点个数
  • 搜索二叉树
    • 逐点插入法
    • 查找
    • 到指定节点的路径

树的基础概念

一、树的特点:
1.有且仅有一个节点没有前驱结点,即根结点
2.除了根结点外,每个结点有且仅有一个直接前驱结点
3.包括根结点在内,每个结点可以多个后继结点

二、基本术语名词
结点的度:该结点拥有的子树的数目。
树的度:树中结点度的最大值。
叶结点:度为0的结点。
分支节点:度非0的结点。
树的层次:根结点为第1层,若某层节点在第i层,则其孩子结点(若存在)为第i+1层。
树的深度/高度:树中结点所处的最大层次数。
路径:路径长度等于路径结点树-1.路径是从di到dj结点的一条结点序列。从根结点到树中其余结点均分别存在一条唯一路径。
祖先与子孙:一个结点的祖先是从根结点到该结点路径上所经过的所有结点;而一个结点的子孙则是以该结点为根的子树上的所有其他结点。
森林:m>=0颗不想交的树组成的树的集合。

判断:
1.度为2的树是二叉树?(×)
2.度为2的有序树是二叉树?(×)

图中没有区分左右子树,不是二叉树。
结论:子树有严格的左右之且度<=2的树是二叉树。

注意:具有三个节点的二叉树有几种形态?
在这里插入图片描述具有三个结点的有几种形态?
在这里插入图片描述

二叉树的性质

1.具有n个结点的非空二叉树共有n-1个分支(边)。
2.非空二叉树的第i层最多有2^(i-1)个结点。(i>=0)
3.深度为h的非空二叉树最多有2^h-1个结点。
4.若非空二叉树有n0个叶结点,有n2个度为2的结点,则n0=n2+1。

证明:
n=n0+n1+n2
设分支数目为B,则根据性质1:
B=n-1
这些分支来自于度为1和度为2的结点:
B=n1+2n2
则根据2和3式:n-1=n1+2n2
即n=1+n1+2n2
=n0+n1+n2
因此:n0=n2+1
推论:n0=n2+2n3+3n4+……+(m-1)nm+1

5.具有n个结点的非空完全二叉树的深度为:h=logn+1;
6.顺序存储结构中:结点i的父节点编号:(i-1)/2;
结点i的左孩子结点:2i+1;右孩子:2i+2;

数组存储方式只适用于完全二叉树和满二叉树,其他二叉树会造成内存的浪费。

二叉树的遍历

在这里插入图片描述树的遍历一般是说在链式结构下的遍历,那么此时我们需要定义一个结构体:

typedef struct node
{
    int val;
    struct node* left;
    struct node* right;
}BTNode;
typedef BTNode* BTNodeptr;

前序遍历

void Preorder(BTNodeptr t)
{
    if(t==NULL)
        return;
    visit(t);//访问结点t
    Preorder(t->left);
    Preorder(t->right);
}

中序遍历

void Inorder(BTNodeptr t)
{
    if(t==NULL)
        return;
    Inorder(t->left);
    visit(t);
    Inorder(t->right);
}

后序遍历

void Postorder(BTNodeptr t)
{
    if(t==NULL)
        return;
    Postorder(t->left);
    Postorder(t->right);
    visit(t);
}

前中后序遍历都是深度优先遍历(DFS),而接下来的层序遍历则是广度优先遍历(BFS);

层序遍历

这种遍历方法没有用到递归,而是使用了一个队列
方法是:从根结点开始,父节点先入队列,再出队列并输出,同时将父节点的两个子节点(若存在)入队。再取出队头元素,同时将队头元素的两个子节点(若存在)入队。直至队列为空,输出的序列就是层序遍历的结果啦~

#define MAX 100
void Treeorder(BTNodeptr t)
{
    BTNode* queue[MAX];
    int Front=0;
    int Rear=MAX-1;
    int Count=0;
    if(t)
    {
        Rear=(Rear+1)%MAX;
        queue[Rear]=t;
        Count++;
    }
    
    BTNode* front;
    while(Count!=0)
    {
        front=queue[Front];
        Front=(Front+1)%MAX;
        Count--;

        visit(front);
        
        if(front->left)
        {
            Rear=(Rear+1)%MAX;
            queue[Rear]=front->left;
            Count++;
        }
        if(front->right)
        {
            Rear=(Rear+1)%MAX;
            queue[Rear]=front->right;
            Count++;
        }
    }
}

根据遍历结果恢复二叉树

前序+中序(√)
后序+中序(×)
前序+后序(×)
因为前序和后序分别一致的两颗树,也有可能结构不同,比如:
在这里插入图片描述
两颗树前序序列都为:ABDC
后序序列都为DBCA,
但很明显,结构不一样

已知前(后)序序列和中序序列,恢复二叉树:
在前(后)序序列中确定根,在中序序列中区分左右。

二叉树的创建

第一种

输入:A B D ^ ^ E J ^ ^ ^ C F ^ I ^ ^ G ^ ^
第一个字符表示根结点字符,后面的每一个字符表示前面字符的孩子结点字符,先输入的是左孩子,后输入右孩子,^表示没有孩子。
那么如何根据上述输入构造出如下的二叉树呢?
在这里插入图片描述

这个输入是一个前序遍历结果,那创建这个树的思想其实也是前序创建,也就是说访问到一个值,那么先创建这个子树的根结点,再创建它的左子树节点,再创建右子树结点,直到遇到^,返回NULL即可。
伪代码体现:

读入字符ch
if(ch==‘^’)
不创建结点,返回NULL
else
创建子树根结点
创建该根结点的左子树
创建该根结点的右子树

这是创建好树以后,按照前中后序遍历打印结果:
在这里插入图片描述

BTNodeptr createtree();
int main()
{
    BTNodeptr root;
    root=createtree();
    Preorder(root);
    printf("\n");
    Inorder(root);
    printf("\n");
    Postorder(root);
    return 0;
}
BTNodeptr createtree()
{
    BTNodeptr p;
    char ch;
    ch=getchar();
    if(ch=='^')
        return NULL;
    else
    {
        p=(BTNodeptr)malloc(sizeof(BTNodeptr));
        p->val=ch;
        p->left=createtree();
        p->right=createtree();
        return p;
    }
}

第二种

输入:
5
ABC
BDE
CFG
EJ^
F^I
先输入分支节点个数(非叶子结点),按层次从左到右依次输入父节点和孩子结点,若孩子结点不存在,则以^字符表示
那么如何根据上述输入构造如下二叉树呢?
在这里插入图片描述

我们有两种方法来解决:第一种用到队列,思想类似于层序遍历,因为输入形式为:根 左 右,因此根入队,根再出队,根的左右子节点入队;输入下一行时,判断队头是不是这一行的第一个字符,如果不是,说明队头元素是一个叶子结点;如果是,那么队头出队,这一行的后两个元素入队(非^时入队),并且链接到队头元素的左右子树上。

BTNodeptr createtree1();
int main()
{
    BTNodeptr root;
    root=createtree1();
    Preorder(root);
    printf("\n");
    Inorder(root);
    printf("\n");
    Postorder(root);
    return 0;
}
BTNodeptr createtree1()
{
    BTNodeptr root=NULL;
    BTNodeptr queue[MAX];
    BTNodeptr p=NULL;//这个用于取队头元素
    int Front=0,Rear=MAX-1;
    char str[4];//存储每一行输入的三个元素
    int n;
    scanf("%d",&n);

    for(int i=0;i<n;i++)
    {
        scanf("%s",str);

        if(root==NULL)
        {
            root=(BTNodeptr)malloc(sizeof(BTNode));
            root->val=str[0];
            root->left=NULL;
            root->right=NULL;
            p=root;
        }
        else//这一步用于找头结点
        {
            do
            {
                p=queue[Front];
                Front=(Front+1)%MAX;
            } while (p->val!=str[0]);
        }

        if(str[1]!='^')
        {
            p->left=(BTNodeptr)malloc(sizeof(BTNode));
            p->left->left=NULL;
            p->left->right=NULL;
            p->left->val=str[1];

            Rear=(Rear+1)%MAX;
            queue[Rear]=p->left;
        }
        if(str[2]!='^')
        {
            p->right=(BTNodeptr)malloc(sizeof(BTNode));
            p->right->left=NULL;
            p->right->right=NULL;
            p->right->val=str[2];

            Rear=(Rear+1)%MAX;
            queue[Rear]=p->right;
        }
    }
    return root;
}

在这里插入图片描述
后三行为按照前中后序遍历输出的结果↑。

BUT/HOWEVER/NEVERTHELESS……!!!!这种方法存在一个很大的缺陷就是:
输入的时候只能按照层序来,也就是说,刚刚我们的输入顺序是:
ABC
BDE
CFG
EJ^
F^I
一旦这个顺序发生变化,这种算法就没办法实现了,比如:
ABC
CFG
F^I
BDE
EJ^
为什么不可以呢?原因就在于队列。当我们读入第一行后,队列中的元素为:
在这里插入图片描述读第二行是时,我们发现队头元素不是C,于是继续向后查找,发现第二个元素是C,然后将C出队,C的子节点入队:
在这里插入图片描述我们此时发现:B出队,但是在输入的第四行,还有B!但是此时B已经不在队列里了。因此,如果输入子树的顺序不是按照层序顺序来进行,那就需要另外定义一个查找函数find,用于在已经构建好的树中查找父节点。

BTNodeptr createtree2();
BTNodeptr find(BTNodeptr root,char ch);
int main()
{
    BTNodeptr root;
    root=createtree2();
    Preorder(root);
    printf("\n");
    Inorder(root);
    printf("\n");
    Postorder(root);
    return 0;
}
BTNodeptr createtree2()
{
    BTNodeptr root=NULL;
    BTNodeptr p=NULL;//这个用于表示每一步的父节点
    char str[4];//存储每一行输入的三个元素
    int n;
    scanf("%d",&n);

    for(int i=0;i<n;i++)
    {
        scanf("%s",str);

        if(root==NULL)
        {
            root=(BTNodeptr)malloc(sizeof(BTNode));
            root->val=str[0];
            root->left=NULL;
            root->right=NULL;
            p=root;
        }
        else//这一步用于找头结点
        {
            p=find(root,str[0]);
        }

        if(str[1]!='^')
        {
            p->left=(BTNodeptr)malloc(sizeof(BTNode));
            p->left->left=NULL;
            p->left->right=NULL;
            p->left->val=str[1];
        }
        if(str[2]!='^')
        {
            p->right=(BTNodeptr)malloc(sizeof(BTNode));
            p->right->left=NULL;
            p->right->right=NULL;
            p->right->val=str[2];
        }
    }
    return root;
}
BTNodeptr find(BTNodeptr root,char ch)
{
    BTNodeptr p=NULL;
    if(root!=NULL)
    {
        if(root->val==ch)
            p=root;
        else
        {
            p=find(root->left,ch);
            if(p==NULL)
                p=find(root->right,ch);
        }   
    }
    return p;
}

改进的地方,就是把找每一行头结点的那一步,从在队列里找,变成了在已有的树中找。同时,find函数也是一个比较基础的树操作,大致和中序遍历的思想一致,先判断头结点的值是否和要找的字符一致,如果不一致,再在左子树里找,如果没找到,再在右子树里找。
在这里插入图片描述

二叉树的典型操作有很多:
检查二叉树是否为空
在二叉树中查找给定元素
获得二叉树中包含给定元素路径
在二叉树中插入一个元素
从二叉树中删除一个元素
获得二叉树的高度
获得二叉树的节点数目
获得二叉树叶节点的数目

遍历二叉树
拷贝二叉树
删除二叉树

现在现在这里介绍加粗的这几种,剩下的插入、删除、结点路径这几种留在一会儿的搜索二叉树(二叉查找树)中介绍。

二叉树的其他典型操作

查找指定元素(一般二叉树)

BTNodeptr find(BTNodeptr root,char ch)
{
    BTNodeptr p=NULL;
    if(root!=NULL)
    {
        if(root->val==ch)
            p=root;
        else
        {
            p=find(root->left,ch);
            if(p==NULL)
                p=find(root->right,ch);
        }   
    }
    return p;
}

二叉树的高度(深度)

int height(BTNodeptr p)
{
    if(p==NULL)
        return 0;
    else return 1+max(height(p->left),height(p->right));
}

二叉树的拷贝

BTNodeptr copy(BTNodeptr src)
{
    BTNodeptr obj;
    if(src==NULL)
        obj=NULL;
    else
    {
        obj=(BTNodeptr)malloc(sizeof(BTNode));
        obj->val=src->val;
        obj->left=copy(src->left);
        obj->right=copy(src->right);
    }
    return obj;
}

拷贝的时候按照前中后序拷贝都可以,但是二叉树销毁,就必须按照后序了:

二叉树的销毁

void destroy(BTNodeptr p)
{
    if(p!=NULL)
    {
        destroy(p->left);
        destroy(p->right);
        free(p);
        p=NULL;
    }
}

二叉树的节点个数

int TreeSize(BTNodeptr root)
{
    return root==NULL?0:TreeSize(root->left)+TreeSize(root->right)+1;
}

第k层的节点个数

可以先拆解一下问题:
递归子问题:
第k层结点个数=左子树第k-1层结点个数+右子树第k-1层结点个数
最小子问题:
遍历到空节点:返回0;该结点不为空但是该结点是叶子结点即k==1

int levelnum(BTNodeptr p,int k)
{
    if(p==NULL)
        return 0;
    if(p!=NULL&&k==1)
        return 1;
    return levelnum(p->left,k-1)+level(p->right,k-1);
}

在这里插入图片描述
以这一棵树为例,我们测试一下各个层的节点个数:
在这里插入图片描述完全正确。

二叉树叶子结点个数

这个题和上一道题趋同,我们先来分解一下问题:
遍历到空节点:返回0
遍历到叶子结点(左右子树都为NULL):返回1
叶子结点个数=左子树的叶子节点个数+右子树的叶子结点个数
写起来:

int leaf(BTNodeptr root)
{
    if(root==NULL)
        return 0;
    if(root->left==NULL&&root->right==NULL)
        return 1;
    return leaf(root->left)+leaf(root->right);
}

还是刚刚那个二叉树,我们检测一下叶子结点个数对不对:
在这里插入图片描述完全正确。

搜索二叉树

也叫二叉查找树,特点为:
若根结点的左子树不空,则左子树上所有结点都小于根结点;若右子树不为空,则右子树上结点值都小于根结点。每一颗子树上也符合上述特点。

逐点插入法

利用这个方法可以建立起搜索二叉树,核心在于和根结点比较,值比根结点大,往右子树插入,比根结点小,插到左子树,相等的话,根据具体情况做具体操作。

现可用递归和非递归两种方式来构建逐点插入法:

递归:

BTNodeptr insert(BTNodeptr p,int item);
int main()
{
    BTNodeptr root=NULL;
    int i,item;
    for(i=0;i<10;i++)
    {
        scanf("%d",&item);
        root=insert(root,item);
    }
    Inorder(root);
    printf("\n");
    return 0;
}
BTNodeptr insert(BTNodeptr p,int item)
{
    if(p==NULL)
    {
        p=(BTNodeptr)malloc(sizeof(BTNode));
        p->val=item;
        p->left=p->right=NULL;
    }
    else if(item<p->val)
    {
        p->left=insert(p->left,item);
    }
    else if(item>p->val)
    {
        p->right=insert(p->right,item);
    }
    else{
        //如果相等,根据具体要求做。
    }
    return p;
}

看看测试结果:
在这里插入图片描述
按照中序遍历输出,序列递增。

非递归:

void insert1(int item);
BTNodeptr root=NULL;
int main()
{
    int i,item;
    for(i=0;i<10;i++)
    {
        scanf("%d",&item);
        insert1(item);
    }
    Inorder(root);
    printf("\n");
    return 0;
}
void insert1(int item)
{
    BTNodeptr new=(BTNodeptr)malloc(sizeof(BTNode));
    new->val=item;
    new->left=new->right=NULL;
    if(root==NULL)
    {
        root=new;
        return;
    }

    BTNodeptr cur=root;
    while(1)
    {
        if(item<cur->val)
        {
            if(cur->left==NULL)
            {
                cur->left=new;     
                break;       
            }
            else
                cur=cur->left;
        }
           
        else if(item>cur->val)
        {
            if(cur->right==NULL)
            {
                cur->right=new;
                break;
            }         
            else
                cur=cur->right;
        }  
        else
        {
            //具体情况具体判断
        }
    }
    return;
}

真心建议各位朋友都用非递归,调试起来也更方便明了,递归的话,调试的时候你的脑子是真跟不上F11的跳跃……

查找

BTNodeptr search(BTNodeptr p,int n)
{
    BTNodeptr cur=p;
    while(cur!=NULL)
    {
        if(n>cur->val)
            cur=cur->right;
        else if(n<cur->val)
            cur=cur->left;
        else
            return cur;
    }
    return NULL;
}

到指定节点的路径

搜索二叉树和普通二叉树的这个算法区别还是很大的,因为搜索二叉树的特殊性质:

搜索二叉树

void searchBST(BTNodeptr p,int n)
{
    BTNodeptr cur=p;
    while(cur!=NULL)
    {
        if(n>cur->val)
        {
            printf("%d ",cur->val);
            cur=cur->right;
        }
        else if(n<cur->val)
        {
            printf("%d ",cur->val);
            cur=cur->left;            
        }
        else
        {
            printf("%d ",cur->val);
            break;
        }
    }
}

在主函数中测试一下:

void searchBST(BTNodeptr p,int n);
BTNodeptr root=NULL;
int main()
{
    int i,item;
    for(i=0;i<10;i++)
    {
        scanf("%d",&item);
        insert1(item);
    }

    searchBST(root,100);
    printf("\n");
    searchBST(root,90);
    printf("\n");
    searchBST(root,80);
    printf("\n");
    searchBST(root,70);
    return 0;
}
void searchBST(BTNodeptr p,int n)
{
    BTNodeptr cur=p;
    while(cur!=NULL)
    {
        if(n>cur->val)
        {
            printf("%d ",cur->val);
            cur=cur->right;
        }
        else if(n<cur->val)
        {
            printf("%d ",cur->val);
            cur=cur->left;            
        }
        else
        {
            printf("%d ",cur->val);
            break;
        }
    }
}

我们先用Insert函数创建了一个有10个结点的二叉树:
在这里插入图片描述我们看看打印的祖先结点:
在这里插入图片描述
完全正确。
其实这个算法就是把刚刚的查找部分改了改。
在每一次判断大小的时候加了一个print语句。

普通二叉树:
这个时候也要用到遍历,但是只能是前序遍历。而且这时候要借助一个栈来存放祖先节点。

void preorder(BTNodeptr p,int item)
{
    if(t!=NULL)
    {
    push(t);
    if(item==t->data)
        //弹出栈中所有元素
    preorder(t->left);
    preorder(t->right);
    pop();
}

解释一下,就是我把一个子树的根结点放在了栈里,如果在这个子树的左子树里找到了目标,那么栈中所有元素就是路径;如果左子树里没有就转战右子树。如果两个子树都没找到,那说明这颗子树不行,“连根拔起”,也就是把刚刚放入栈中的子树根节点剔除栈。

搜索二叉树还有几个比较经典的题,比如:表达式树、词频统计,这个我们第五次作业里有,在下一篇文章中再整理。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/695003.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

BFS实现图的点的层次-java

加强对广度优先搜索的理解&#xff0c;其实就是主要的3个步骤&#xff0c;外加数组模拟单链表是基础&#xff0c;要搞懂。 目录 前言 一、图中点的层次 二、算法思路 1.广度优先遍历 2.算法思路 三、代码如下 1.代码如下&#xff08;示例&#xff09;&#xff1a; 2.读入…

地理信息系统(ArcGIS)在水文水资源、水环境中的实践技术应用及案例分析教程

原文链接&#xff1a;地理信息系统&#xff08;ArcGIS&#xff09;在水文水资源、水环境中的实践技术应用及案例分析教程https://mp.weixin.qq.com/s?__bizMzUzNTczMDMxMg&mid2247606047&idx5&sn8c9701518e13b85d8429186fcfe98ad8&chksmfa821ef8cdf597ee7a8a1…

数据加密验签机的工作原理

数据加密验签机&#xff0c;作为网络安全领域的关键设备&#xff0c;其重要性不言而喻。以下是对数据加密验签机的详细介绍&#xff1a; 一、引言 在数字化时代&#xff0c;数据的机密性、完整性和真实性是企业和个人都极为关注的问题。数据加密验签机&#xff0c;正是为了解决…

嘉立创面板制作不规则图案技巧

首先附上效果图展示&#xff1a; 所需软件&#xff1a;嘉立创EDA(专业版)、photoshop、Adobe Illustrator 嘉立创EDA(专业版)&#xff1a; 嘉立创面板绘制很容易上手&#xff0c;只要了解这几个图层的作用便可以做出自己想要的面板。 材料边界层&#xff1a; 代表选⽤的材料…

时隔很久运行苍穹外卖项目,出现很多错误

中途运行了很多其他项目&#xff0c;maven的配置文件还被我修改了一次。导致再次运行苍穹外卖项目出现很多错误。 发现没有办法&#xff0c;把本地的仓库删了个干干净净。然后点击clean发现报错&#xff1a; Cannot access alimaven (http://mavejavascript:void(0);n.aliyun.…

Verilog实战学习到RiscV - 4 : ICEStick 评估板计数器

这篇是关于always 时序逻辑的。直接上代码。 引脚配置文件 set_io leds[0] 99 set_io leds[1] 98 set_io leds[2] 97 set_io leds[3] 96set_io -pullup yes pmod[0] 78 set_io -pullup yes pmod[1] 79参看icestick的原理图 这里在pmod上使用了内部的上拉电阻。…

数据结构:旋转数组

方法1 &#xff08;三次逆置法&#xff09;&#xff1a; void reverse(int* nums, int start, int end) {while (start < end) {int temp nums[start];nums[start] nums[end];nums[end] temp;start;end--;} }void rotate(int* nums, int numsSize, int k) {k k % numsS…

Camtasia Studio怎么自动加字幕呢,Camtasia Studio有什么功能呢

在信息化高度发达的今天&#xff0c;视频作为一种直观、生动的信息表达方式&#xff0c;受到了越来越多人的青睐。无论是教育领域的教学视频&#xff0c;还是企业宣传的推广短片&#xff0c;甚至是个人创作的分享作品&#xff0c;都离不开一款优秀的视频编辑软件。Camtasia Stu…

uc/OS-III多任务程序

文章目录 一、实验内容二、实验步骤&#xff08;一&#xff09;基于STM32CubeMX建立工程&#xff08;二&#xff09;获取uc/OS-III源码&#xff08;三&#xff09;代码移植 三、修改mai.c文件四、实验现象 一、实验内容 学习嵌入式实时操作系统&#xff08;RTOS&#xff09;,以…

ssm613个性化旅游攻略定制系统设计与实现+jsp【已测试】

前言&#xff1a;&#x1f469;‍&#x1f4bb; 计算机行业的同仁们&#xff0c;大家好&#xff01;作为专注于Java领域多年的开发者&#xff0c;我非常理解实践案例的重要性。以下是一些我认为有助于提升你们技能的资源&#xff1a; &#x1f469;‍&#x1f4bb; SpringBoot…

数据结构笔记 3 串 数组 广义表

以下了解即可&#xff0c;暂时没发现有什么考点 参考&#xff1a; 【数据结构】——多维数组和广义表_数据结构loc-CSDN博客 相对应的题目&#xff1a; 他这个数组不是从0开始的&#xff0c;是从1开始的&#xff0c;所以为了配合公式要减1 下面这道题又不一样&#xff0c;它是…

C++从入门到精通(最详细教程,12万总结,带你掌握c++知识,涵盖大量知识点)

目录 一、面向对象的思想 二、类的使用 1.类的构成 2.类的设计 三、对象的基本使用 四、类的构造函数 1.构造函数的作用 2.构造函数的特点 3.默认构造函数 3.1.合成的默认构造函数 3.2.手动定义的默认构造函数 四、自定义的重载构造函数 五、拷贝构造函数 1.手动…

「React」RSC 服务端组件

前言 RSC&#xff08;React Server Components&#xff09;是React框架的一个新特性&#xff0c;它允许开发者编写只在服务器端渲染的组件。与传统的服务器端渲染&#xff08;SSR&#xff09;不同&#xff0c;RSC的目标是提升性能和用户体验&#xff0c;同时减少客户端加载的J…

vivado HW_ILA

HW_ILA 描述 集成逻辑分析器&#xff08;ILA&#xff09;调试核心允许您执行系统内监控 通过对内核上的调试探针&#xff0c;在实现的设计中对信号进行处理。您可以配置 ILA核心实时触发特定硬件事件&#xff0c;并在 以系统速度探测。 ILA调试核心可以通过从IP目录实例化ILA核…

windows软件手动设置开机自启

博主需求 由于很多线上课程使用outlook进行教学&#xff0c;课程链接都关联到outlook日历中了&#xff0c;只要保持outlook是打开的状态就能收到上课提醒&#xff0c;非常方便。 但是有时候会忘记打开outlook查看&#xff0c;我偶尔会错过一些提醒QAQ。 所以如何让outlook常…

重生奇迹MU剑士怎么连招

剑士有很多技能&#xff0c;所以在连招方面就比较有讲究了。我们先来看一下这些技能的介绍吧。 1技能&#xff1a;造成伤害&#xff0c;冷却3秒。 2技能&#xff1a;旋转造成范围伤害&#xff0c;冷却6秒。 3技能&#xff1a;突刺前方敌人&#xff0c;短暂眩晕&#xff0c;冷…

Codeforces Round 951 (Div. 2)C. Earning on Bets

Problem - C - Codeforces 合理的答案&#xff1a; 求出 k1 ~ kn 的最小公倍数lcm&#xff0c;如果 lcm/k1 lcm/k2 ... lcm/kn < lcm 即符合题意。 左边之和为我们付的总钱数&#xff0c;右边才是每次选择得到的钱数(都为lcm)。 直接拿1e9检查是否可以分即可&#xff…

【Redis学习笔记06】Jedis客户端(下)

Jedis客户端 1. 命令 1.1 Hash类型 Hash类型相信大家并不陌生&#xff0c;许多编程语言都有对应数据结构的实现&#xff0c;可能叫做哈希、字典、映射、关联数组&#xff0c;是相当重要的&#xff01; 在实际开发中非常常用在面试中也是高频考点 1.1.1 常见命令 HSET命令…

pytorch-数据增强

目录 1. Flip翻转2. Rotate旋转3. scale缩放4. crop裁剪5. 总结6. 完整代码 1. Flip翻转 上图中做了随机水平翻转和随机垂直翻转&#xff0c;翻转完成后转化成tensor 2. Rotate旋转 上图中作了2次旋转第一次旋转角度在-15<0<15范围内&#xff0c;随机出一个角度&#xf…

Java SE(Java Platform, Standard Edition)

Java SE&#xff08;Java Platform, Standard Edition&#xff09; 是Java平台的一个版本&#xff0c;面向桌面应用程序、服务器和嵌入式环境。Java SE提供了开发和运行Java应用程序的基础API&#xff08;Application Programming Interface&#xff0c;应用程序编程接口&…