python学opencv|读取图像(七十五)人脸识别:Fisherfaces算法和LBPH算法

【1】引言

前序学习进程中,已经掌握了使用Eigenfaces算法进行的人脸识别。相关文章链接为:

python学opencv|读取图像(七十四)人脸识别:EigenFaces算法-CSDN博客

在此基础上,学习剩余两种人脸识别算法:Fisherfaces算法和LBPH算法。

【2】官网教程

实际上,点击下述链接,可以直达三种算法的官网教程:

OpenCV: Face Recognition with OpenCV

对于Fisherfaces算法和LBPH算法,具体的应用流程和Eigenfaces算法一致:先确定用哪种算法后,就建立识别器,然后把样本放入训练器进行训练,最后输出识别效果。

【2.1】Fisherfaces算法

点击下方链接,直达Fisherfaces算法的官网教程:

OpenCV: cv::face::FisherFaceRecognizer Class Reference

在官网,可以看到Fisherfaces算法识别器相关的说明:

图1  cv.face.FisherFaceRecognizer.create算法识别器

具体的,cv.face.FisherFaceRecognizer.create识别器有两个参数:

    cv.face.FisherFaceRecognizer.create(    

    num_components              #可选参数,PCA(主成分分析)中保留分量的个数

    threshold  )                        #可选参数,人脸识别的阈值

【2.2】LBPH算法

点击下方链接,直达LBPH算法的官网教程:

OpenCV: cv::face::LBPHFaceRecognizer Class Reference

在官网,可以看到LBPH算法识别器相关的说明:

图2  cv.face.LBPHFaceRecognizer.create算法识别器 

具体的,cv.face.LBPHFaceRecognizer.create识别器有五个参数:

cv.face.LBPHFaceRecognizer.create(    

radius                            #可选参数,圆形局部二进制模式的半径

neighbors                      #可选参数,圆形局部二进制模式的采样数目

grid_x                            #可选参数,水平方向上的单元格数

grid_y                            #可选参数,竖直方向上的单元格数

threshold    )                  #可选参数,识别用的阈值

【3】代码测试

【3.1】Fisherfaces算法

对使用Fisherfaces算法的人脸识别,和使用Eigenfaces算法的人脸识别在代码上一样,所以可以直接使用先前的代码,只需要改一行旧代码即可:

# 创建人脸识别器
recognizer = cv.face.EigenFaceRecognizer.create()

改后代码为:

# 创建人脸识别器
recognizer = cv.face.FisherFaceRecognizer.create()

不过为了增强对比,这次用了两组图片,所以存储地址的列表变长了:

# 定义图片路径字典,键为标签,值为该标签对应的图片路径列表
image_paths_dict = {
    0: [
        r"D:\python\pythonworkspace\pythonProject3\0\01.jpg",
        r"D:\python\pythonworkspace\pythonProject3\0\02.jpg",
        r"D:\python\pythonworkspace\pythonProject3\0\03.jpg"
    ],
    1: [
        r"D:\python\pythonworkspace\pythonProject3\1\01.jpg",
        r"D:\python\pythonworkspace\pythonProject3\1\02.jpg",
        r"D:\python\pythonworkspace\pythonProject3\1\03.jpg"
    ]
}

这里的两组图片分别用了标签0和1。

待测试的图片也变成了两组:

# 定义测试图片路径列表
test_image_paths = [
    r"D:\python\pythonworkspace\pythonProject3\zyz\11.jpg",
    r"D:\python\pythonworkspace\pythonProject3\s01\05.jpg"
]

使用Fisherfaces算法的人脸识别和使用Eigenfaces算法的人脸识别在判断原理上也很类似,以5000为置信度标准,小于5000为图像识别成功,对比结果为0时表明两个图像完全一样,而超出为不能识别。

实际用的图像0有:

图3  训练样本0

图4  训练样本1 

图5  待测图像1  

图6  待测图像2

代码运行后,获得的识别效果为:

图7  待测图像1识别效果

图8  待测图像2识别效果

这个效果其实出乎预料,待测图像2本应被识别,但却未被认出。

不过用于训练的的样本的确太少,所以这样的识别效果也算正常。

此时的完整代码为:

import cv2 as cv
import numpy as np

# 定义图片路径字典,键为标签,值为该标签对应的图片路径列表
image_paths_dict = {
    0: [
        r"D:\python\pythonworkspace\pythonProject3\0\01.jpg",
        r"D:\python\pythonworkspace\pythonProject3\0\02.jpg",
        r"D:\python\pythonworkspace\pythonProject3\0\03.jpg"
    ],
    1: [
        r"D:\python\pythonworkspace\pythonProject3\1\01.jpg",
        r"D:\python\pythonworkspace\pythonProject3\1\02.jpg",
        r"D:\python\pythonworkspace\pythonProject3\1\03.jpg"
    ]
}

photos = []  # 定义photo空列表,用来存储图像
labels = []  # 定义lables空列表,用来存储图像对应的标签

# 定义图像尺寸信息
width = 600  # 定义一个初始宽度量
height = 600  # 定义一个初始高度量
target_size = (width, height)  # 定义一个元组,存储宽度量和高度量

# 读取图片并调整尺寸
for label, paths in image_paths_dict.items():
    for path in paths:
        # 以彩色模式读取图像
        img = cv.imread(path)
        if img is not None:
            # 调整图像尺寸为与目标尺寸相同
            img = cv.resize(img, target_size)
            # 将彩色图像转换为灰度图像用于训练
            gray_img = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
            photos.append(gray_img)
            labels.append(label)
        else:
            print(f"无法读取图片: {path}")

# 定义标签映射
names = {
    0: "su",
    1: "other_person"
}

# 创建人脸识别器
recognizer = cv.face.FisherFaceRecognizer.create()

# 训练人脸识别器
if photos and labels:
    recognizer.train(photos, np.array(labels))  # 训练器读入人脸样本和对应标签

    # 定义测试图片路径列表
    test_image_paths = [
        r"D:\python\pythonworkspace\pythonProject3\zyz\11.jpg",
        r"D:\python\pythonworkspace\pythonProject3\s01\05.jpg"
    ]

    for test_image_path in test_image_paths:
        # 读取测试图片,以彩色模式读取
        test_img = cv.imread(test_image_path)
        if test_img is not None:
            # 调整测试图像尺寸与目标尺寸一致
            test_img = cv.resize(test_img, target_size)
            # 将彩色图像转换为灰度图像用于识别
            gray_test_img = cv.cvtColor(test_img, cv.COLOR_BGR2GRAY)
            label, confidence = recognizer.predict(gray_test_img)

            # 设定识别阈值
            threshold = 5000  # 可根据实际情况调整
            if confidence > threshold:
                # 添加未识别标记
                cv.putText(test_img, "Unrecognized", (10, 30), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
            else:
                print(f'confidence={confidence}')
                print(names[label])
                # 添加识别结果标记
                text = names[label]
                cv.putText(test_img, text, (10, 30), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)

            # 输出图像
            cv.imshow('Result Image', test_img)
            cv.waitKey(0)
            cv.destroyAllWindows()
        else:
            print(f"无法读取测试图片: {test_image_path}")

【3.2】LBPH算法

对使用Fisherfaces算法、Eigenfaces算法的人脸识别,和使用LBPH算法的人脸识别在代码上的设计也一样,只是调用的参数不同,并且使用LBPH算法时的参数均可以由算法自动选择。

所以依然可以直接使用Fisherfaces算法的代码,只需将创建识别器的代码修改即可:

# 创建人脸识别器
recognizer = cv.face.LBPHFaceRecognizer.create()

其余代码均无需修改,代码运行后获得的人脸识别效果为:

图9 待测图像1人脸识别效果  

图10 待测图像2人脸识别效果

使用LBPH算法的人脸识别效果稍好,因为它正确识别了待测图像2。

【4】细节说明

所有识别器均在对灰度图像进行识别时更高效,因此实际的识别过程大都是对灰度图像进行。

【5】总结

掌握了使用python+opencv实现了使用Fisherfaces算法和LBPH算法进行人脸识别的技巧。

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/973857.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【GaussTech技术专栏】GaussDB AI大模型在智能运维场景的应用

在数字化转型的浪潮中,数据库作为企业数据管理的核心,扮演着至关重要的角色。随着业务规模的扩大和数据量的激增,数据库运维的复杂性也随之增加。传统运维方法在确保数据高可用性、系统稳定性、性能优化及故障快速响应方面,面临着…

燧光 XimmerseMR SDK接入Unity

官网SDK文档连接: RhinoX Unity XR SDK 一:下载SDK 下载链接:RhinoX Unity XR SDK 二:打开Unity项目,添加Package 1、先添加XR Core Utilties包和XR Interaction Toolkit包 2、导 2、再导入下载好的燧光SDK 三&…

政安晨的AI大模型训练实践 九 - 熟悉LLaMA Factory的详细参数含义-基本概念理解一下

政安晨的个人主页:政安晨 欢迎 👍点赞✍评论⭐收藏 希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正! 小伙伴铁子们,上手先熟悉起来训练工具的每一个参数,很重要。 参照我…

Arduino IDE编程ESP32-C3的Flash选项

用Arduino IDE为ESP32-C3编程 概述ESP32-C3的FLASH连接Arduino编程选项FLASH的QIO和DIO总结后记概述 买了CORE-ESP32-C3实验板,用Arduino IDE为板子编程。板子如下: 编程出现问题,串口打印输出: 13:56:22.927 -> E (25) boot: load partition table error! 13:56:22.…

SAP 代码扫描工具

描述: ZSCANNER是一个先进的代码分析工具,旨在提供对程序和功能模块内部工作的全面见解。它揭示了代码的技术细节,包括正在创建、读取、更新或删除的数据表(CRUD操作),以及正在调用的类、功能模块和BAPI&a…

el-table树状表格,默认展开第一个节点的每一层

效果如图 <template><el-table:data"tableData"style"width: 100%":tree-props"{ children: children, hasChildren: hasChildren }":expand-row-keys"expandRowKeys"row-key"id"expand-change"handleExpan…

以ChatGPT为例解析大模型背后的技术

目录 1、大模型分类 2、为什么自然语言处理可计算&#xff1f; 2.1、One-hot分类编码&#xff08;传统词表示方法&#xff09; 2.2、词向量 3、Transformer架构 3.1、何为注意力机制&#xff1f; 3.2、注意力机制在 Transformer 模型中有何意义&#xff1f; 3.3、位置编…

I2C实践开发 ---【STM32-I2C-HDC1080温湿度采集系统】

I2C实践开发 — STM32-I2C-HDC1080温湿度采集系统 目录 I2C实践开发 --- STM32-I2C-HDC1080温湿度采集系统1. 引言2. 系统架构2.1 硬件架构2.2 软件架构 3. 代码分析3.1 I2C驱动文件 (i2c.h 和 i2c.c)3.2 HDC1080传感器驱动文件 (hdc1080.h 和 hdc1080.c) 4. 功能总结【HDC1080…

java毕业设计之医院门诊挂号系统(源码+文档)

风定落花生&#xff0c;歌声逐流水&#xff0c;大家好我是风歌&#xff0c;混迹在java圈的辛苦码农。今天要和大家聊的是一款基于ssm的医院门诊挂号系统。项目源码以及部署相关请联系风歌&#xff0c;文末附上联系信息 。 项目简介&#xff1a; 医院门诊挂号系统的主要使用者…

[笔记.AI]大模型的蒸馏、剪枝、量化 | 模型压缩 | 作用与意义

上周简单整理了《deepseek-r1的不同版本&#xff08;满血版、蒸馏版、量化&#xff09;》&#xff0c;这次继续完善对其的认知——补充“剪枝”&#xff0c;并进一步整理蒸馏、剪枝、量化的作用与意义。 以下摘自与DeepSeek-R1在线联网版的对话 蒸馏、剪枝、量化是当前主流的三…

VMware按照的MacOS升级后无法联网

背景 3年前公司使用Flutter开发了一款app&#xff0c;现在app有微小改动需要重新发布到AppStore 问题 问题是原来的Vmware搭建的开发环境发布App失败了 提示&#xff1a;App需要使用xcode15IOS 17 SDK重新构建&#xff0c;这样的话MacOS至少需要升级到13.5 Xcode - 支持 - Ap…

量子计算的基本运算:Hadamard 门、CNOT 门、Pauli 门详解

量子计算是现代计算科学的前沿领域,它与经典计算机在处理信息的方式上有着本质的区别。量子计算机利用量子比特(qubit)的叠加态和量子纠缠等特性来进行计算,从而在某些特定任务上超越传统计算机。量子计算的核心运算单元是量子门,它们通过作用于量子比特来操控量子状态。本…

go http Client net/http

框架推荐 net/http go的内置http工具&#xff0c;可以构建client和server。 Slf4j Controller RequestMapping("/rest") public class RestTestController {GetMapping("/get")ResponseBodypublic String get(RequestBody SSHConnectParam param) throws…

Pycharm中断点使用技巧

1. 打开项目并准备代码 首先&#xff0c;打开 PyCharm 并加载你的 Python 项目&#xff0c;确保你已经有想要调试的 Python 代码文件。如&#xff1a; def add_numbers(a, b):result a breturn resultnum1 5 num2 3 sum_result add_numbers(num1, num2) print(f"Th…

【数据库系统概论】第第12章 并发控制

12.1 并发控制概述 并发控制是指数据库管理系统&#xff08;DBMS&#xff09;通过控制多个事务同时执行&#xff0c;保证数据的一致性和隔离性&#xff0c;避免事务间的相互干扰。 事务串行执行不能充分利用系统资源 并发执行的优点&#xff1a;能够减少处理机的空闲 时间&a…

阿里云通过docker安装skywalking及elasticsearch操作流程

系统 本文使用系统为 Alibaba Cloud Linux 3.2104 LTS 64位 配置为 4核8G PS&#xff1a;最低配置应为2核4G&#xff0c;配置过低无法启动 安装docker 1.卸载旧版本docker yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \docker-…

【分治法】循环赛日程表问题 C\C++(附代码、实例)

问题描述 设计一个满足以下要求的比赛日程表&#xff1a; 每位选手必须与其他n-1个选手各赛一次每位选手一天只能赛一次循环赛一个进行n-1天选手人数 n 2 k n2^k n2k 问题分析 下图是一种日程表的安排方式 观察上图&#xff0c;我们发现日程表左上角的四行四列和右下角的四…

【第一节】C++设计模式(创建型模式)-工厂模式

目录 前言 一、面向对象的两类对象创建问题 二、解决问题 三、工厂模式代码示例 四、工厂模式的核心功能 五、工厂模式的应用场景 六、工厂模式的实现与结构 七、工厂模式的优缺点 八、工厂模式的扩展与优化 九、总结 前言 在面向对象系统设计中&#xff0c;开发者常…

基于windows的docker-desktop安装kubenetes以及dashboard

我们需要k8s环境做各种小实验可以本地安装一个&#xff0c;这里介绍win11如何通过docker-desktop安装k8s以及通过helm安装dashboard。 下载docker-desktop地址https://www.docker.com/get-started/打开【控制面板】->打开【启用和关闭windows功能】->分别勾选【hyper-v】…

vmware虚拟机Ubuntu Desktop系统怎么和我的电脑相互复制文件、内容

1、先安装vmware workstation 17 player&#xff0c;然后再安装Ubuntu Desktop虚拟机&#xff0c;然后再安装vmware tools&#xff0c;具体可以参考如下视频&#xff1a; VMware虚拟机与主机实现文件共享&#xff0c;其实一点也不难_哔哩哔哩_bilibili 2、本人亲自试过了&…