通义千问开源模型部署使用

首先可以参考modelScope社区给出的使用文档,已经足够全面

通义千问-7B-Chat

但在按照文档中步骤部署时,还是有些错误问题发生,可以搜索参考的解决方式不多,所以记录下来

个人电脑部署

这里不太建议使用自己的笔记本部署通义千问模型,因为实在是太耗资源,我使用的M2芯片的MacBook Pro即使运行起来了,但模型回答一个问题都需要四五分钟的时间,内存全部占满,其他应用程序也都强制退出了。所以还是使用社区提供的免费资源,或者有更高配置的服务器来部署模型。而且期间还有各种问题,搜了很多github上的问答才解决,耗时耗力,这里就不记录了,很不推荐这种方式。

免费算力服务器

打开modelScope社区后,点击登录注册可以看到免费赠送算力的活动

注册完成后在对应模型里可以看到,随时都能启用的服务器

这里CPU环境的服务器勉强可以跑起来模型,但运行效果感人,而且配置过程中有各种问题需要修改,而GPU环境启动模型可以说是非常流畅,体验效果也很好

CPU环境启动

社区提供的服务器配置已经很高了,8核32G,但因为是纯CPU环境,启动过程中还是有些问题

安装依赖包

第一行命令不需要运行,服务器已经自带了modelscope包

只需要新建一个Terminal窗口来执行第二条命令

启动代码

直接运行文档提供的代码会报错,这里是因为纯CPU环境导致的

错误 1

RuntimeError: "addmm_impl_cpu_" not implemented for 'Half'Hide Error Details

RuntimeError: "addmm_impl_cpu_" not implemented for 'Half'
---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
Cell In[1], line 8
      5 model = AutoModelForCausalLM.from_pretrained("qwen/Qwen-7B-Chat", revision = 'v1.0.5',device_map="auto", trust_remote_code=True,fp16 = True).eval()
      6 model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-7B-Chat",revision = 'v1.0.5', trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参
----> 8 response, history = model.chat(tokenizer, "你好", history=None)
      9 print(response)
     10 response, history = model.chat(tokenizer, "浙江的省会在哪里?", history=history) 

File ~/.cache/huggingface/modules/transformers_modules/Qwen-7B-Chat/modeling_qwen.py:1010, in QWenLMHeadModel.chat(self, tokenizer, query, history, system, append_history, stream, stop_words_ids, **kwargs)
   1006 stop_words_ids.extend(get_stop_words_ids(
   1007     self.generation_config.chat_format, tokenizer
   1008 ))
   1009 input_ids = torch.tensor([context_tokens]).to(self.device)
-> 1010 outputs = self.generate(
   1011             input_ids,
   1012             stop_words_ids = stop_words_ids,
   1013             return_dict_in_generate = False,
   1014             **kwargs,
   1015         )
   1017 response = decode_tokens(
   1018     outputs[0],
   1019     tokenizer,
   (...)
   1024     errors='replace'
   1025 )
   1027 if append_history:

错误 2

ValueError: The current `device_map` had weights offloaded to the disk. Please provide an `offload_folder` for them. Alternatively, make sure you have `safetensors` installed if the model you are using offers the weights in this format.Hide Error Details

ValueError: The current `device_map` had weights offloaded to the disk. Please provide an `offload_folder` for them. Alternatively, make sure you have `safetensors` installed if the model you are using offers the weights in this format.
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Cell In[2], line 5
      2 from modelscope import GenerationConfig
      4 tokenizer = AutoTokenizer.from_pretrained("qwen/Qwen-7B-Chat", revision = 'v1.0.5',trust_remote_code=True)
----> 5 model = AutoModelForCausalLM.from_pretrained("qwen/Qwen-7B-Chat", revision = 'v1.0.5',device_map="auto", trust_remote_code=True,fp16 = True).eval()
      6 model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-7B-Chat",revision = 'v1.0.5', trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参
      7 model.float()

File /opt/conda/lib/python3.8/site-packages/modelscope/utils/hf_util.py:98, in get_wrapped_class.<locals>.ClassWrapper.from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs)
     95 else:
     96     model_dir = pretrained_model_name_or_path
---> 98 model = module_class.from_pretrained(model_dir, *model_args,
     99                                      **kwargs)
    100 model.model_dir = model_dir
    101 return model

解决方式

首先确保torch 2.0.1版本,然后在代码中添加这两行,即可运行

model.float()

offload_folder="offload_folder",

from modelscope import AutoModelForCausalLM, AutoTokenizer
from modelscope import GenerationConfig
import datetime
print("启动时间:" + str(datetime.datetime.now()))
tokenizer = AutoTokenizer.from_pretrained("qwen/Qwen-7B-Chat", revision = 'v1.0.5',trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("qwen/Qwen-7B-Chat", revision = 'v1.0.5',device_map="auto",offload_folder="offload_folder", trust_remote_code=True,fp16 = True).eval()
model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-7B-Chat",revision = 'v1.0.5', trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参
model.float()

print("开始执行:" + str(datetime.datetime.now()))
response, history = model.chat(tokenizer, "你好", history=None)
print(response)
print("第一个问题处理完毕:" + str(datetime.datetime.now()))
response, history = model.chat(tokenizer, "浙江的省会在哪里?", history=history) 
print(response)
print("第二个问题处理完毕:" + str(datetime.datetime.now()))
response, history = model.chat(tokenizer, "它有什么好玩的景点", history=history)
print(response)
print("第三个问题处理完毕:" + str(datetime.datetime.now()))

运行起来之后速度实在感人,没回答一个问题都需要 5 分钟左右,还有一定概率直接启动失败

启动模型过程中会出现这种报错,点击OK重新执行就好了,可能是服务器负载太高

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/68156.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

exchange partition global index

EXCHANGE PARTITION with a Table having a UNIQUE INDEX and PK Constraint. (Doc ID 1620636.1)​编辑To Bottom In this Document Symptoms Changes Cause Solution References APPLIES TO: Oracle Database - Enterprise Edition - Version 11.2.0.3 and later Oracle Da…

Spring整合MyBatis(详细步骤)

Spring与Mybatis的整合&#xff0c;大体需要做两件事&#xff0c; 第一件事是:Spring要管理MyBatis中的SqlSessionFactory 第二件事是:Spring要管理Mapper接口的扫描 具体的步骤为: 步骤1:项目中导入整合需要的jar包 <dependency><!--Spring操作数据库需要该jar包…

gazebo 导入从blender导出的dae等文件

背景&#xff1a; gazebo 模型库里的模型在我需要完成的任务中不够用&#xff0c;还是得从 solidworks、3DMax, blender这种建模软件里面在手动画一些&#xff0c;或者去他们的库里面在挖一挖。 目录 1 blender 1-1 blender 相关links 1-2 install 2 gazebo导入模型 2-1 g…

湘大 XTU OJ 1308 比赛 题解:循环结束的临界点+朴素模拟

一、链接 比赛 二、题目 题目描述 有n个人要进行比赛&#xff0c;比赛规则如下&#xff1a; 假设每轮比赛的人是m&#xff0c;取最大的k&#xff0c;k2^t且k≤m。这k个人每2人举行一场比赛&#xff0c;胜利者进入一下轮&#xff0c;失败者被淘汰。余下的m-k个人&#xff0…

从Spring源码看创建对象的过程

从Spring源码看创建对象的过程 Spring对于程序员set注入的属性叫做属性的填充、对于set注入之后的处理&#xff08;包括BeanPostProcessor的处理、初始化方法的处理&#xff09;叫做初始化。 研读AbstractBeanFactory类中的doGetBean()方法 doGetBean()方法首先完成的工作是…

mysql基础之触发器的简单使用

1.建立学生信息表 -- 触发器 -- 建立学生信息表 create table s1(id int unsigned auto_increment,name varchar(30),score tinyint unsigned,dept varchar(50),primary key(id) );2.建立学生补考信息表 -- 建立学生补考信息表 create table s2 like s1;3.建立触发器&#xf…

Grafana技术文档-概念-《十分钟扫盲》

Grafana官网链接 Grafana: The open observability platform | Grafana Labs 基本概念 Grafana是一个开源的度量分析和可视化套件&#xff0c;常用于对大量数据进行实时分析和可视化。以下是Grafana的基本概念&#xff1a; 数据源&#xff08;Data Source&#xff09;&#…

【大数据】Flink 详解(一):基础篇

Flink 详解&#xff08;一&#xff09;&#xff1a;基础篇 1、什么是 Flink &#xff1f; Flink 是一个以 流 为核心的高可用、高性能的分布式计算引擎。具备 流批一体&#xff0c;高吞吐、低延迟&#xff0c;容错能力&#xff0c;大规模复杂计算等特点&#xff0c;在数据流上提…

模板的进阶

目录 1.非类型模板参数 2.模板特化 2.1概念 2.2函数模板特化 2.3类模板特化 2.3.1全特化 2.3.2偏特化 3.模板分离编译 3.1什么是分离编译 3.2 模板的分离编译 3.3解决方法 4. 模板总结 1.非类型模板参数 模板参数分类类型形参与非类型形参。 类型形参即&#xff1a…

Python(七十五--总结)列表、字典、元组、集合总结

❤️ 专栏简介&#xff1a;本专栏记录了我个人从零开始学习Python编程的过程。在这个专栏中&#xff0c;我将分享我在学习Python的过程中的学习笔记、学习路线以及各个知识点。 ☀️ 专栏适用人群 &#xff1a;本专栏适用于希望学习Python编程的初学者和有一定编程基础的人。无…

关于Object 0 = new Object() 的追魂九连问

文章目录 对象的创建过程对象的组成解析普通对象**结果分析&#xff1a;**给对象添加属性注意事项 补充jvm压缩指针栗子&#xff1a; 对象头包含什么对象怎么定位&#xff1f;**句柄方式和直接引用的优缺点&#xff1a;** 对象怎么分配&#xff1f;为什么hotspot不使用c对象来代…

QT的信号槽的四种写法和五种链接方式

目录 四种信号槽写法&#xff1a; 五种连接方式&#xff1a; 实例&#xff1a; 常见错误及改正&#xff1a; 错误1: 未连接信号与槽 错误2: 信号和槽参数不匹配 错误3: 未使用Q_OBJECT宏 错误4: 跨线程连接未处理 在Qt中&#xff0c;信号&#xff08;Signal&#xff09…

Stephen Wolfram:让 ChatGPT 真正起作用的是什么?

What Really Lets ChatGPT Work? 让 ChatGPT 真正起作用的是什么&#xff1f; Human language—and the processes of thinking involved in generating it—have always seemed to represent a kind of pinnacle of complexity. And indeed it’s seemed somewhat remarkabl…

go-admin 使用开发

在项目中使用redis 作为数据缓存&#xff1a;首先引入该包 “github.com/go-redis/redis/v8” client : redis.NewClient(&redis.Options{Addr: config.QueueConfig.Redis.Addr, // Redis 服务器地址Password: config.QueueConfig.Redis.Password, // Redis 密码&…

Vue自定义指令使用

本篇文章讲述使用Vue自定义指令&#xff0c;并在项目中完成相应功能。 在平常Vue脚手架项目中&#xff0c;使用到 自定义指令较少&#xff0c;一般都是使用的自带指令&#xff0c;比如 v-show 、v-if 、 v-for 、 v-bind 之类的。这些已经能够满足大多数项目使用。更多的可能也…

springboot+mybatis实现简单的增、删、查、改

这篇文章主要针对java初学者&#xff0c;详细介绍怎么创建一个基本的springboot项目来对数据库进行crud操作。 目录 第一步&#xff1a;准备数据库 第二步&#xff1a;创建springboot项目 方法1&#xff1a;通过spring官网的spring initilizer创建springboot项目 方法2&am…

UG NX二次开发(C#)-CAM自定义铣加工的出口环境

文章目录 1、前言2、自定义铣削加工操作3、出错原因4、解决方案4.1 MILL_USER的用户参数4.2 采用自定义铣削的方式生成自定义的dll4.2 配置加工的出口环境4.3 调用dll5、结论1、前言 作为一款大型的CAD/CAM软件, UG NX为我们提供了丰富的加工模板,通过加工模板能直接用于生成…

day7 8-牛客67道剑指offer-JZ74、57、58、73、61、62、64、65、把字符串转换成整数、数组中重复的数字

文章目录 1. JZ74 和为S的连续正数序列暴力解法滑动窗口&#xff08;双指针&#xff09; 2. JZ57 和为S的两个数字3. JZ58 左旋转字符串4. JZ73 翻转单词序列5. JZ61 扑克牌顺子6. JZ62 孩子们的游戏(圆圈中最后剩下的数)迭代 模拟递归 约瑟夫环问题 找规律 7. JZ64 求123...n8…

0基础学C#笔记08:插入排序法

文章目录 前言一、过程简单描述&#xff1a;二、代码总结 前言 我们在玩打牌的时候&#xff0c;你是怎么整理那些牌的呢&#xff1f;一种简单的方法就是一张一张的来&#xff0c;将每一张牌插入到其他已经有序的牌中的适当位置。当我们给无序数组做排序的时候&#xff0c;为了…

SpringBoot 该如何预防 XSS 攻击

XSS 漏洞到底是什么&#xff0c;说实话我讲不太清楚。但是可以通过遇到的现象了解一下。在前端Form表单的输入框中&#xff0c;用户没有正常输入&#xff0c;而是输入了一段代码&#xff1a;</input><img src1 onerroralert1> 这个正常保存没有问题。问题出在了列表…