目录
- 一、要求
- 二、定时器中断与PWM介绍
- 1、定时器类型
- 2、定时器中断基本结构
- 3、预分频器时序与计数器时序
- (1)预分频器时序
- (2)计数器时序
- 3、PWM
- (1)简介
- (2)输出比较模式
- (3)PWM基本结构及参数计算
- 三、实践
- 1、定时器中断点灯
- 2、定时器PWM模式点灯
- 四、总结
- 五、引用
一、要求
- 使用STM32F103的 Tim2~Tim5其一定时器的某一个通道pin(与GPIOx管脚复用,见下图),连接一个LED,用定时器计数方式,控制LED以2s的频率周期性地亮-灭。
- 接上,采用定时器PWM模式,让 LED 以呼吸灯方式渐亮渐灭,周期为1~2秒,自己调整占空比变化到一个满意效果。
二、定时器中断与PWM介绍
1、定时器类型
STM32F103C8T6定时器资源:TIM1、TIM2、TIM3、TIM4
2、定时器中断基本结构
3、预分频器时序与计数器时序
(1)预分频器时序
计数器计数频率:CK_CNT = CK_PSC / (PSC + 1)
(2)计数器时序
计数器溢出频率:CK_CNT_OV = CK_CNT / (ARR + 1)= CK_PSC / (PSC + 1) / (ARR + 1)
3、PWM
(1)简介
1.PWM(Pulse Width Modulation)脉冲宽度调制
2.在具有惯性的系统中,可以通过对一系列脉冲的宽度进行调制,来等效地获得所需要的模拟参量,常应用于电机控速等领域
3。PWM参数:
频率 = 1 / TS
占空比 = TON / TS
分辨率 = 占空比变化步距
(2)输出比较模式
(3)PWM基本结构及参数计算
PWM基本结构
PWM参数计算
PWM频率:Freq = CK_PSC / (PSC + 1) / (ARR + 1)
PWM占空比:Duty = CCR / (ARR + 1)
PWM分辨率:Reso = 1 / (ARR + 1)
三、实践
1、定时器中断点灯
代码:
Timer.c:
#include "stm32f10x.h" // Device header
void Timer_Init(void)
{
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
TIM_InternalClockConfig(TIM2);
TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInitStructure.TIM_Period = 10000 - 1;
TIM_TimeBaseInitStructure.TIM_Prescaler = 14400 - 1;
TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);
TIM_ClearFlag(TIM2, TIM_FLAG_Update);
TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_Init(&NVIC_InitStructure);
TIM_Cmd(TIM2, ENABLE);
}
Timer.h:
#ifndef __TIMER_H
#define __TIMER_H
void Timer_Init(void);
#endif
main.c:
#include "stm32f10x.h" // Device header
#include "Delay.h"
#include "LED.h"
#include "Timer.h"
int main(void)
{
LED_Init();
Timer_Init();
while (1)
{
}
}
void TIM2_IRQHandler(void)
{
if (TIM_GetITStatus(TIM2, TIM_IT_Update) == SET)
{
LED_Turn();
TIM_ClearITPendingBit(TIM2, TIM_IT_Update);
}
}
结果:
2、定时器PWM模式点灯
代码:
PWM.C:
#include "stm32f10x.h" // Device header
void PWM_Init(void)
{
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
TIM_InternalClockConfig(TIM2);
TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInitStructure.TIM_Period = 100 - 1;
TIM_TimeBaseInitStructure.TIM_Prescaler = 720 - 1;
TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);
TIM_OCInitTypeDef TIM_OCInitStructure;
TIM_OCStructInit(&TIM_OCInitStructure);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = 0; //CCR
TIM_OC1Init(TIM2, &TIM_OCInitStructure);
TIM_Cmd(TIM2, ENABLE);
}
void PWM_SetCompare1(uint16_t Compare)
{
TIM_SetCompare1(TIM2, Compare);
}
PWM.H:
#ifndef __PWM_H
#define __PWM_H
void PWM_Init(void);
void PWM_SetCompare1(uint16_t Compare);
#endif
MAIN.C:
#include "stm32f10x.h"
#include "Delay.h"
#include "PWM.h"
uint8_t i;
int main(void)
{
PWM_Init();
while (1)
{
for (i = 0; i <= 100; i++)
{
PWM_SetCompare1(i);
Delay_ms(10);
}
for (i = 0; i <= 100; i++)
{
PWM_SetCompare1(100 - i);
Delay_ms(10);
}
}
}
结果:
四、总结
这次STM32定时器及PWM实验让我深入了解了这些功能的工作原理和实现方式。通过动手实践和解决问题,我不仅提高了自己的编程技能,还对嵌入式系统开发有了更深入的认识。
以上为此次学习成果,若有问题,烦请指正。
五、引用
链接: STM32CubeMX & Keil——STM32F103C8T6:PWM控制LED灯
链接: PWM频率计算 测频法 测周法 输出比较与输入捕获
链接: 定时器&PWM应用编程