第100+9步 ChatGPT文献复现:ARIMA预测百日咳

基于WIN10的64位系统演示

一、写在前面

我们来继续换一篇文章来学习学习:

《BMC Public Health》杂志的2022年一篇题目为《ARIMA and ARIMA-ERNN models for prediction of pertussis incidence in mainland China from 2004 to 2021》文章的模拟数据做案例。

这文章做的是用:使用单纯ARIMA模型和ARIMA-ERNN组合模型预测中国大陆百日咳发病率。

文章是用单纯的ARIMA模型作为对照,更新了ARIMA-ERNN模型。本期,我们先来尝试ARIMA模型。

数据不是原始数据哈,是我使用GPT-4根据文章的散点图提取出来近似数据,只弄到了2004-2017年的。

二、闲聊和复现:

1数据基本描述

没啥好说的,就是最最基本的描述统计。

要是有原始数据,直接可以让GPT-4帮分析。

(2)季节拆分

之前介绍过了哈,使用SPSS也可以实现,文章使用的是R语言:

①首先,使用GPT-4生成:

咒语:

直接输出结果:

注意哈,我的数据是模拟数据,且只到2017年12月,所以乍一看跟文章的略有偏差。

GPT给出的代码(Python)供参考:

import pandas as pd
from statsmodels.tsa.seasonal import STL
import matplotlib.pyplot as plt

# Load the data from the CSV file
data = pd.read_csv('/mnt/data/数据.csv')

# Convert the 'time' column to datetime to facilitate resampling by year
data['time'] = pd.to_datetime(data['time'], format='%b-%y')

# Set the time column as index and set frequency to month start
data.set_index('time', inplace=True)
data.index.freq = 'MS'

# Prepare the data for STL decomposition by ensuring it has a frequency (monthly data)
# Apply STL decomposition with a seasonal period of 13 (adjusted as needed)
stl = STL(data['incidence'], seasonal=13)
result = stl.fit()

# Plotting the results of the STL decomposition
plt.figure(figsize=(12, 8))

# Original data plot
plt.subplot(4, 1, 1)
plt.plot(result.observed)
plt.title('Original Data')

# Seasonal component plot
plt.subplot(4, 1, 2)
plt.plot(result.seasonal)
plt.title('Seasonal Component')

# Trend component plot
plt.subplot(4, 1, 3)
plt.plot(result.trend)
plt.title('Trend Component')

# Residual plot
plt.subplot(4, 1, 4)
plt.plot(result.resid)
plt.title('Residual')

# Adjust layout and save the figure to a file
plt.tight_layout()
plt.savefig('/mnt/data/STL_Decomposition_Corrected.png')

plt.show()

②首先,使用SPSS生成:

步骤我在简单过一下,大家巩固记忆:

看结果:

(2)构建ARIMA模型

文章使用的是SAS建模,那我就用JMP展示(传送门):

看到季节性和总体上升趋势,直接无脑d和D取1,然后p、q、P、Q取值0、1、2、3即可:

结果最优模型如下:

ARIMA(3,1,3)(3,1,2)12:拟合的MAPE为27%,预测的MAPE为18%,比文章的高一些,不过基本处于一个数量级水平。

不用纠结为啥ARIMA参数不同,实验条件都不一样。

三、后话

到目前为止,大家应该熟练掌握单纯ARIMA模型了吧。

四、数据

不提供,自行根据下图提取吧

实在没有GPT-4,那就这个:

https://apps.automeris.io/wpd/index.zh_CN.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/664236.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

源码编译安装LNMP

1、LNMP 包含:linux、Nginx、Mysql、php LNMP的工作原理 由客户端发送页面请求给Nginx,Nginx会根据location匹配用户访问请求的URL路径判断是静态还是动态,静态的一般是以 .html .htm .css .shtml结尾,动态的一般是以 .php .jsp…

【测试】linux快捷指令工具cxtool

简介 登录linux时,我们经常需要重复输入一些指令. 这个工具可以把这些指令预置,需要的时候鼠标一点,会自动按预置的字符敲击键盘,敲击出指令. 下载地址 https://download.csdn.net/download/bandaoyu/89379371 使用方法 1,编辑配置文件,自定义自己的快捷指令。 2…

PMP证书有用吗?到底要不要报名?

证书就是,适用者自有用,不适者无用。对于做管理之类的人士考个PMP必然有用。 首先PMP是什么? PMP指的是项目管理专业人士资格认证。那怎么来定义“项目”?“项目“可以简单的理解为:在给定的费用与时间约束范围之内,完成意向独立的、一次…

2024年5月软件设计师选择题答案(持续更新~)

题目1【考生回忆版】在计算机网络协议5层体系结构中,()工作在数据链路层 A.路由器 B.以太网交换机 C.防火墙 D.集线器 题目2【考生回忆版】软件交付之后,由于软硬件环境发生变化而对软件进行修改的行为属于()维护。 A.改善性 B.适应性 C.预防性 …

JVM之【运行时数据区1】

JVM简图 运行时数据区简图 一、程序计数器(Program Counter Register) 1.程序计数器是什么? 程序计数器是JVM内存模型中的一部分,它可以看作是一个指针,指向当前线程所执行的字节码指令的地址。每个线程在执行过程中…

『ZJUBCA MeetUP』 5月25日线下活动——Aptos 链的动态与应用

2024 求是创新 ZJUBCA Sponsored by the ALCOVE Community TIME:2024/05/25 ADD:浙江大学紫金港校区 --- Alcove 是 Aptos 公链与 Alibaba Cloud 共同打造的亚洲首个 Move 开发者社区,致力于支持开发者使用 Move 语言构建下一代 Web3 应用&am…

5分钟了解APP广告变现成功之道!

在当今的移动互联网时代,随着智能手机的普及,越来越多的APP应运而生,竞争愈发激烈。 对于开发者和企业来说,如何在保证用户体验的前提下实现广告变现,成为了一个既重要又棘手的问题。 本文旨在深入探讨和揭示成功的A…

济南著名起名大师,现代山东文化名人颜廷利教授:通过魔方解析世界

济南著名起名大师,现代山东文化名人颜廷利教授:通过魔方解析世界 在山东济南,中国第一起名大师的恩师颜廷利教授不仅是一位杰出的齐鲁文化名人,更是全球首个利用魔方游戏来解析和理解世界的先驱。他的理论框架——包括升命学说、净…

YOLO目标检测:框架技术原理和代码实现

Dream推荐 适读人群 :本书适合对YOLO目标检测感兴趣、了解深度学习相关概念的算法工程师、软件工程师等人员阅读。 全面:涵盖6个常用目标检测框架(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOX、YOLOv7)的发展状况、技术原理和代码实…

过敏者的福音:猫毛克星大揭秘!使用宠物空气净化器效果如何?

对于猫毛过敏者来说,家中爱宠的陪伴与过敏的困扰并存,给他们的日常生活带来了极大的不便。猫毛过敏者常常因为与猫咪接触后出现打喷嚏、鼻塞、眼睛发痒等症状而苦恼,严重时甚至可能影响到他们的呼吸健康。 然而,这并不意味着猫毛…

相机等效焦距

1. 背景 物理焦距我们很熟悉,但是在接触实际的相机参数时,相机厂家会提到一个参数等效焦距,甚至有时候不提供物理焦距,这时候如果我们得到真实的物理焦距需要进行一定的转换.在介绍两者之间的转换关系前,先介绍一下等效焦距的由来. 如上图,假设在某一个镜头,其成像面会出现图…

无线领夹麦克风哪个品牌音质最好?领夹麦克风品牌排行榜前十名

​短视频、直播已成为现代生活中不可或缺的一部分,而领夹式无线麦克风则是这些活动中不可或缺的重要工具。它们能够轻松捕捉声音,让内容更加生动、真实。然而,市场上的无线麦克风种类繁多,价格各异,如何挑选一款适合自…

5G NR TAE TEST

环境配置: 测试TAE时,需要比对不同的Antenna Port之间的差异来测试 配置DL 2 layer MU的case layer1:通过设置weight,只有一个物理天线上有weight,其他天线上的weight为0,该天线的DMRS DMRS Port设置为1…

最佳 Mac 数据恢复:恢复 Mac 上已删除的文件

尝试过许多 Mac 数据恢复工具,但发现没有一款能达到宣传的效果?我们重点介绍最好的 Mac 数据恢复软件 没有 Mac 用户愿意担心数据丢失,但您永远不知道什么时候会发生这种情况。无论是意外删除 Mac 上的重要文件、不小心弄湿了 Mac、感染病毒…

HTML动态响应2-Servlet+Ajax实现HTTP前后台交互方式

作者:私语茶馆 前言 其他涉及到的参考章节: HTML动态响应1—Ajax动态处理服务端响应-CSDN博客 Web应用JSON解析—FastJson1.2.83/Tomcat/IDEA解析案例-CSDN博客 HTML拆分与共享方式——多HTML组合技术-CSDN博客 1.场景: WEb项目经常需要前后端交互数据,并动态修改HTML页…

定时器与PWM的LED控制

目录 一、基础概念定时器定时器类型定时器特性 PWM定义占空比原理 二、实验1.LED周期性亮灭定时器TIM2配置GPIO引脚设置工程相关参数配置Keil编写程序 2.LED呼吸灯(PWM)呼吸灯原理Keil编写程序Keil虚拟示波器,观察 PWM输出波形设置点击setup,并设置观察引…

统计计算六|自助法及置换检验(Bootstrap and Permutation Test)

系列文章目录 统计计算一|非线性方程的求解 统计计算二|EM算法(Expectation-Maximization Algorithm,期望最大化算法) 统计计算三|Cases for EM 统计计算四|蒙特卡罗方法(Monte Carlo Method) 统计计算五|MCMC&#x…

spring boot 中的异步@Async

spring boot 开启异步调用 1、启动类上添加EnableAsync注解,表示启动异步 2、在具体实现异步的方法上添加Async注解 package com.example.demo;import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootAppli…

rtos最小任务切换的实现 keil软件仿真 stm32 PendSV

最小任务切换的实现 本例子实现了一个 rtos 最小的任务切换功能,使用 keil 仿真功能,在模拟的 stm32f103 的器件上实现了使用 PendSV 中断切换线程的效果。 git 源码仓库:https://github.com/yutianos/rtos-little 本文链接:csdn…

时钟、复位与上电初始化

目录 1. 复位2.1. 异步复位 同步释放2.2. Xilinx FPGA复位设计尽量少用复位reg信号初始值基于PLL锁定(locked)复位设计 2. 时钟 1. 复位 FPGA中复位设计总结 深入理解复位—同步复位,异步复位,异步复位同步释放(含多时钟域&#x…