python与深度学习(十五):CNN和宝可梦模型

目录

  • 1. 说明
  • 2. 宝可梦模型
    • 2.1 导入相关库
    • 2.2 建立模型
    • 2.3 模型编译
    • 2.4 数据生成器
    • 2.5 模型训练
    • 2.6 模型保存
  • 3. 宝可梦的CNN模型可视化结果图
  • 4. 完整代码
  • 5. 宝可梦的迁移学习

1. 说明

本篇文章是CNN的另外一个例子,宝可梦模型,是自制数据集的例子。之前的例子都是python中库自带的,但是这次的例子是自己搜集数据集,如下图所示整理。
在这里插入图片描述
在这里插入图片描述
之前简单介绍如何自制数据集,在这里继续介绍将自制的数据划分为训练集,测试集和验证集。
首先建立一个pokeman的文件夹,然后利用之前介绍的爬虫下载5种宝可梦的图片,然后运行下面代码。

import glob
import os
import cv2
import numpy as np
import random
import tensorflow as tf
from tensorflow import keras

tf.random.set_seed(520)
np.random.seed(520)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
assert tf.__version__.startswith('2.')


def Data_Generation():
    X_data = [];
    Y_data = []
    path_data = [];
    path_label = []

    # path_file=os.getcwd() #获取当前工作目录
    files = os.listdir('pokeman')  # 获取'pokeman'文件夹下的所有文件名

    for file in files:
        print(file)
        for path in glob.glob('pokeman/' + file + '/*.*'):
            if 'jpg' or 'png' or 'bmp' in path:  # 只获取jpg/png/bmp格式的图片
                path_data.append(path)

    random.shuffle(path_data)  # 打乱数据

    for paths in path_data:  #
        if 'bulbasaur' in paths:  # 为每一类打标签
            path_label.append(0)
        elif 'charmander' in paths:
            path_label.append(1)
        elif 'mewtwo' in paths:
            path_label.append(2)
        elif 'pikachu' in paths:
            path_label.append(3)
        elif 'squirtle' in paths:
            path_label.append(4)

        img = cv2.imread(paths)  # 用opencv读图片数据
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  # cv的图片通道是BGR,要转换成送入NN的RGB
        img = cv2.resize(img, (96, 96))  # 统一图片大小
        X_data.append(img)

    L = len(path_data)
    Y_data = path_label
    X_data = np.array(X_data, dtype=float)
    Y_data = np.array(Y_data, dtype='uint8')
    X_train = X_data[0:int(L * 0.8)]  # 将数据分为训练集 验证集和测试集 比例为 0.8:0.1:0.1
    print(X_train.shape)
    Y_train = Y_data[0:int(L * 0.8)]
    print(Y_train.shape)
    X_valid = X_data[int(L * 0.8):int(L * 0.9)]
    Y_valid = Y_data[int(L * 0.8):int(L * 0.9)]
    X_test = X_data[int(L * 0.9):]
    Y_test = Y_data[int(L * 0.9):]
    return X_train, Y_train, X_valid, Y_valid, X_test, Y_test, L


X_train, Y_train, X_valid, Y_valid, X_test, Y_test, L = Data_Generation()
np.savez(os.path.join('pokeman', 'data.npz'), X_train=X_train, Y_train=Y_train, X_valid=X_valid, Y_valid=Y_valid,
         X_test=X_test, Y_test=Y_test)
# 打包成npz的压缩格式 储存在工程文件目录中,这样运行程序进行测试时就不用每次都重复生成数据,直接调用npz就好

2. 宝可梦模型

2.1 导入相关库

以下第三方库是python专门用于深度学习的库。需要提前下载并安装

from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPool2D
from keras import optimizers, losses
from keras.preprocessing.image import ImageDataGenerator
import sys, os  # 目录结构
import matplotlib.pyplot as plt
from keras.callbacks import EarlyStopping, ReduceLROnPlateau

2.2 建立模型

这是采用另外一种书写方式建立模型。
构建了三层卷积层,三层池化层,然后是展平层(将二维特征图拉直输入给全连接层),然后是三层全连接层,并且加入了dropout层。

"1.模型建立"
# 1.卷积层,输入图片大小(96, 96, 3), 卷积核个数16,卷积核大小(5, 5), 激活函数'relu'
conv_layer1 = Conv2D(input_shape=(96, 96, 3), filters=16, kernel_size=(5, 5), activation='relu')
# 2.最大池化层,池化层大小(2, 2), 步长为2
max_pool1 = MaxPool2D(pool_size=(2, 2), strides=2)
# 3.卷积层,卷积核个数32,卷积核大小(5, 5), 激活函数'relu'
conv_layer2 = Conv2D(filters=32, kernel_size=(5, 5), activation='relu')
# 4.最大池化层,池化层大小(2, 2), 步长为2
max_pool2 = MaxPool2D(pool_size=(2, 2), strides=2)
# 5.卷积层,卷积核个数64,卷积核大小(5, 5), 激活函数'relu'
conv_layer3 = Conv2D(filters=64, kernel_size=(5, 5), activation='relu')
# 6.最大池化层,池化层大小(2, 2), 步长为2
max_pool3 = MaxPool2D(pool_size=(2, 2), strides=2)
# 7.卷积层,卷积核个数128,卷积核大小(5, 5), 激活函数'relu'
conv_layer4 = Conv2D(filters=128, kernel_size=(5, 5), activation='relu')
# 8.最大池化层,池化层大小(2, 2), 步长为2
max_pool4 = MaxPool2D(pool_size=(2, 2), strides=2)
# 9.展平层
flatten_layer = Flatten()
# 10.Dropout层, Dropout(0.2)
third_dropout = Dropout(0.2)
# 11.全连接层/隐藏层1,240个节点, 激活函数'relu'
hidden_layer1 = Dense(240, activation='relu')
# 12.全连接层/隐藏层2,84个节点, 激活函数'relu'
hidden_layer3 = Dense(84, activation='relu')
# 13.Dropout层, Dropout(0.2)
fif_dropout = Dropout(0.5)
# 14.输出层,输出节点个数5, 激活函数'softmax'
output_layer = Dense(5)
model = Sequential([conv_layer1, max_pool1, conv_layer2, max_pool2,
                    conv_layer3, max_pool3, conv_layer4, max_pool4,
                    flatten_layer, third_dropout, hidden_layer1,
                    hidden_layer3, fif_dropout, output_layer])

2.3 模型编译

模型的优化器是Adam,学习率是0.01,
损失函数是binary_crossentropy,二分类交叉熵,
性能指标是正确率accuracy,
另外还加入了回调机制。
回调机制简单理解为训练集的准确率持续上升,而验证集准确率基本不变,此时已经出现过拟合,应该调制学习率,让验证集的准确率也上升。

"2.模型编译"
# 模型编译,2分类:binary_crossentropy
model.compile(optimizer=optimizers.Adam(lr=1e-3),
                loss=losses.CategoricalCrossentropy(from_logits=True),
                metrics=['accuracy'])
model.summary()  # 模型统计

# 回调机制 动态调整学习率
reduce = ReduceLROnPlateau(monitor='val_accuracy',  # 设置监测的值为val_accuracy
                               patience=2,  # 设置耐心容忍次数为2
                               verbose=1,  #
                               factor=0.5,  # 缩放学习率的值为0.5,学习率将以lr = lr*factor的形式被减少
                               min_lr=0.000001  # 学习率最小值0.000001
                               )   # 监控val_accuracy增加趋势

2.4 数据生成器

加载自制数据集
利用数据生成器对数据进行数据加强,即每次训练时输入的图片会是原图片的翻转,平移,旋转,缩放,这样是为了降低过拟合的影响。
然后通过迭代器进行数据加载,目标图像大小统一尺寸96963,设置每次加载到训练网络的图像数目,设置而分类模型(默认one-hot编码),并且数据打乱。

# 生成器对象1:  归一化
gen = ImageDataGenerator(rescale=1 / 255.0)
# 生成器对象2:  归一化 + 数据加强
gen1 = ImageDataGenerator(
    rescale=1 / 255.0,
    rotation_range=5,  # 图片随机旋转的角度5度
    width_shift_range=0.1,
    height_shift_range=0.1,  # 水平和竖直方向随机移动0.1
    shear_range=0.1,  # 剪切变换的程度0.1
    zoom_range=0.1,  # 随机放大的程度0.1
    fill_mode='nearest')  # 当需要进行像素填充时选择最近的像素进行填充
# 拼接训练和验证的两个路径
train_path = os.path.join(sys.path[0], 'data', 'train')
val_path = os.path.join(sys.path[0], 'data', 'val')
print('训练数据路径: ', train_path)
print('验证数据路径: ', val_path)
# 训练和验证的两个迭代器
train_iter = gen1.flow_from_directory(train_path,  # 训练train目录路径
                                      target_size=(96, 96),  # 目标图像大小统一尺寸96
                                      batch_size=8,  # 设置每次加载到内存的图像大小
                                      class_mode='categorical',  # 设置分类模型(默认one-hot编码)
                                      shuffle=True)  # 是否打乱
val_iter = gen.flow_from_directory(val_path,  # 测试val目录路径
                                   target_size=(96, 96),  # 目标图像大小统一尺寸96
                                   batch_size=8,  # 设置每次加载到内存的图像大小
                                   class_mode='categorical',  # 设置分类模型(默认one-hot编码)
                                   shuffle=True)  # 是否打乱

2.5 模型训练

模型训练的次数是30,每1次循环进行测试

"3.模型训练"
# 模型的训练, model.fit
result = model.fit(train_iter,  # 设置训练数据的迭代器
                   epochs=30,  # 循环次数30次
                   validation_data=val_iter,  # 验证数据的迭代器
                   callbacks=[reduce],  # 回调机制设置为reduce
                   validation_freq=1)

2.6 模型保存

以.h5文件格式保存模型

"4.模型保存"
# 保存训练好的模型
model.save('my_bkm.h5')
"5.模型训练时的可视化"
# 显示训练集和验证集的acc和loss曲线
acc = result.history['accuracy']  # 获取模型训练中的accuracy
val_acc = result.history['val_accuracy']  # 获取模型训练中的val_accuracy
loss = result.history['loss']  # 获取模型训练中的loss
val_loss = result.history['val_loss']  # 获取模型训练中的val_loss
# 绘值acc曲线
plt.figure(1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()
plt.savefig('my_bkm_acc.png', dpi=600)
# 绘制loss曲线
plt.figure(2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.savefig('my_bkm_loss.png', dpi=600)
plt.show()  # 将结果显示出来

3. 宝可梦的CNN模型可视化结果图

Found 116 images belonging to 5 classes.
Epoch 1/30
 56/118 [=============>................] - ETA: 12s - loss: 1.5176 - accuracy: 0.3061F:\python_code\python_study\venv\lib\site-packages\PIL\Image.py:993: UserWarning: Palette images with Transparency expressed in bytes should be converted to RGBA images
  "Palette images with Transparency expressed in bytes should be "
118/118 [==============================] - 25s 205ms/step - loss: 1.3913 - accuracy: 0.3863 - val_loss: 1.1440 - val_accuracy: 0.4310 - lr: 0.0010
Epoch 2/30
118/118 [==============================] - 22s 190ms/step - loss: 0.9990 - accuracy: 0.5646 - val_loss: 0.8448 - val_accuracy: 0.6466 - lr: 0.0010
Epoch 3/30
118/118 [==============================] - 22s 190ms/step - loss: 0.8921 - accuracy: 0.5966 - val_loss: 0.8387 - val_accuracy: 0.5862 - lr: 0.0010
Epoch 4/30
118/118 [==============================] - 22s 186ms/step - loss: 0.7903 - accuracy: 0.6649 - val_loss: 0.6711 - val_accuracy: 0.6638 - lr: 0.0010
Epoch 5/30
118/118 [==============================] - 22s 186ms/step - loss: 0.8736 - accuracy: 0.6638 - val_loss: 0.5738 - val_accuracy: 0.7759 - lr: 0.0010
Epoch 6/30
118/118 [==============================] - 23s 192ms/step - loss: 0.6817 - accuracy: 0.7225 - val_loss: 0.6160 - val_accuracy: 0.7241 - lr: 0.0010
Epoch 7/30
118/118 [==============================] - ETA: 0s - loss: 0.6360 - accuracy: 0.7204
Epoch 7: ReduceLROnPlateau reducing learning rate to 0.0005000000237487257.
118/118 [==============================] - 24s 201ms/step - loss: 0.6360 - accuracy: 0.7204 - val_loss: 0.5757 - val_accuracy: 0.7586 - lr: 0.0010
Epoch 8/30
118/118 [==============================] - 25s 213ms/step - loss: 0.5462 - accuracy: 0.7994 - val_loss: 0.5143 - val_accuracy: 0.7845 - lr: 5.0000e-04
Epoch 9/30
118/118 [==============================] - 23s 198ms/step - loss: 0.5129 - accuracy: 0.8282 - val_loss: 0.4831 - val_accuracy: 0.8103 - lr: 5.0000e-04
Epoch 10/30
118/118 [==============================] - 26s 218ms/step - loss: 0.4712 - accuracy: 0.8410 - val_loss: 0.4913 - val_accuracy: 0.8276 - lr: 5.0000e-04
Epoch 11/30
118/118 [==============================] - 24s 204ms/step - loss: 0.3914 - accuracy: 0.8954 - val_loss: 0.4444 - val_accuracy: 0.8190 - lr: 5.0000e-04
Epoch 12/30
118/118 [==============================] - 26s 217ms/step - loss: 0.4182 - accuracy: 0.8730 - val_loss: 0.2892 - val_accuracy: 0.8793 - lr: 5.0000e-04
Epoch 13/30
118/118 [==============================] - 24s 203ms/step - loss: 0.3533 - accuracy: 0.8965 - val_loss: 0.3292 - val_accuracy: 0.8707 - lr: 5.0000e-04
Epoch 14/30
118/118 [==============================] - ETA: 0s - loss: 0.3113 - accuracy: 0.9093
Epoch 14: ReduceLROnPlateau reducing learning rate to 0.0002500000118743628.
118/118 [==============================] - 25s 216ms/step - loss: 0.3113 - accuracy: 0.9093 - val_loss: 0.3788 - val_accuracy: 0.8448 - lr: 5.0000e-04
Epoch 15/30
118/118 [==============================] - 24s 205ms/step - loss: 0.2714 - accuracy: 0.9146 - val_loss: 0.2918 - val_accuracy: 0.8793 - lr: 2.5000e-04
Epoch 16/30
118/118 [==============================] - 28s 236ms/step - loss: 0.2520 - accuracy: 0.9264 - val_loss: 0.2720 - val_accuracy: 0.8966 - lr: 2.5000e-04
Epoch 17/30
118/118 [==============================] - 26s 223ms/step - loss: 0.2647 - accuracy: 0.9242 - val_loss: 0.3163 - val_accuracy: 0.8879 - lr: 2.5000e-04
Epoch 18/30
118/118 [==============================] - ETA: 0s - loss: 0.2045 - accuracy: 0.9402
Epoch 18: ReduceLROnPlateau reducing learning rate to 0.0001250000059371814.
118/118 [==============================] - 26s 218ms/step - loss: 0.2045 - accuracy: 0.9402 - val_loss: 0.2453 - val_accuracy: 0.8966 - lr: 2.5000e-04
Epoch 19/30
118/118 [==============================] - 26s 222ms/step - loss: 0.1866 - accuracy: 0.9477 - val_loss: 0.2465 - val_accuracy: 0.8966 - lr: 1.2500e-04
Epoch 20/30
118/118 [==============================] - ETA: 0s - loss: 0.1782 - accuracy: 0.9413
Epoch 20: ReduceLROnPlateau reducing learning rate to 6.25000029685907e-05.
118/118 [==============================] - 24s 203ms/step - loss: 0.1782 - accuracy: 0.9413 - val_loss: 0.2706 - val_accuracy: 0.8793 - lr: 1.2500e-04
Epoch 21/30
118/118 [==============================] - 25s 208ms/step - loss: 0.1486 - accuracy: 0.9498 - val_loss: 0.2947 - val_accuracy: 0.8879 - lr: 6.2500e-05
Epoch 22/30
118/118 [==============================] - ETA: 0s - loss: 0.1581 - accuracy: 0.9530
Epoch 22: ReduceLROnPlateau reducing learning rate to 3.125000148429535e-05.
118/118 [==============================] - 25s 212ms/step - loss: 0.1581 - accuracy: 0.9530 - val_loss: 0.2734 - val_accuracy: 0.8966 - lr: 6.2500e-05
Epoch 23/30
118/118 [==============================] - 25s 212ms/step - loss: 0.1403 - accuracy: 0.9541 - val_loss: 0.2923 - val_accuracy: 0.8966 - lr: 3.1250e-05
Epoch 24/30
118/118 [==============================] - 25s 210ms/step - loss: 0.1408 - accuracy: 0.9573 - val_loss: 0.2596 - val_accuracy: 0.9052 - lr: 3.1250e-05
Epoch 25/30
118/118 [==============================] - 26s 225ms/step - loss: 0.1420 - accuracy: 0.9584 - val_loss: 0.2862 - val_accuracy: 0.8966 - lr: 3.1250e-05
Epoch 26/30
118/118 [==============================] - ETA: 0s - loss: 0.1348 - accuracy: 0.9594
Epoch 26: ReduceLROnPlateau reducing learning rate to 1.5625000742147677e-05.
118/118 [==============================] - 27s 226ms/step - loss: 0.1348 - accuracy: 0.9594 - val_loss: 0.2690 - val_accuracy: 0.9052 - lr: 3.1250e-05
Epoch 27/30
118/118 [==============================] - 27s 227ms/step - loss: 0.1198 - accuracy: 0.9626 - val_loss: 0.2801 - val_accuracy: 0.9052 - lr: 1.5625e-05
Epoch 28/30
118/118 [==============================] - ETA: 0s - loss: 0.1396 - accuracy: 0.9520
Epoch 28: ReduceLROnPlateau reducing learning rate to 7.812500371073838e-06.
118/118 [==============================] - 26s 224ms/step - loss: 0.1396 - accuracy: 0.9520 - val_loss: 0.2825 - val_accuracy: 0.9052 - lr: 1.5625e-05
Epoch 29/30
118/118 [==============================] - 25s 213ms/step - loss: 0.1296 - accuracy: 0.9658 - val_loss: 0.2830 - val_accuracy: 0.9052 - lr: 7.8125e-06
Epoch 30/30
118/118 [==============================] - ETA: 0s - loss: 0.1255 - accuracy: 0.9605
Epoch 30: ReduceLROnPlateau reducing learning rate to 3.906250185536919e-06.
118/118 [==============================] - 26s 225ms/step - loss: 0.1255 - accuracy: 0.9605 - val_loss: 0.2876 - val_accuracy: 0.8966 - lr: 7.8125e-06

在这里插入图片描述
在这里插入图片描述

从以上结果可知,模型的准确率达到了90%,准确率还是很高的。

4. 完整代码

from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPool2D
from keras import optimizers, losses
from keras.preprocessing.image import ImageDataGenerator
import sys, os  # 目录结构
import matplotlib.pyplot as plt
from keras.callbacks import EarlyStopping, ReduceLROnPlateau

"1.模型建立"
# 1.卷积层,输入图片大小(96, 96, 3), 卷积核个数16,卷积核大小(5, 5), 激活函数'relu'
conv_layer1 = Conv2D(input_shape=(96, 96, 3), filters=16, kernel_size=(5, 5), activation='relu')
# 2.最大池化层,池化层大小(2, 2), 步长为2
max_pool1 = MaxPool2D(pool_size=(2, 2), strides=2)
# 3.卷积层,卷积核个数32,卷积核大小(5, 5), 激活函数'relu'
conv_layer2 = Conv2D(filters=32, kernel_size=(5, 5), activation='relu')
# 4.最大池化层,池化层大小(2, 2), 步长为2
max_pool2 = MaxPool2D(pool_size=(2, 2), strides=2)
# 5.卷积层,卷积核个数64,卷积核大小(5, 5), 激活函数'relu'
conv_layer3 = Conv2D(filters=64, kernel_size=(5, 5), activation='relu')
# 6.最大池化层,池化层大小(2, 2), 步长为2
max_pool3 = MaxPool2D(pool_size=(2, 2), strides=2)
# 7.卷积层,卷积核个数128,卷积核大小(5, 5), 激活函数'relu'
conv_layer4 = Conv2D(filters=128, kernel_size=(5, 5), activation='relu')
# 8.最大池化层,池化层大小(2, 2), 步长为2
max_pool4 = MaxPool2D(pool_size=(2, 2), strides=2)
# 9.展平层
flatten_layer = Flatten()
# 10.Dropout层, Dropout(0.2)
third_dropout = Dropout(0.2)
# 11.全连接层/隐藏层1,240个节点, 激活函数'relu'
hidden_layer1 = Dense(240, activation='relu')
# 12.全连接层/隐藏层2,84个节点, 激活函数'relu'
hidden_layer3 = Dense(84, activation='relu')
# 13.Dropout层, Dropout(0.2)
fif_dropout = Dropout(0.5)
# 14.输出层,输出节点个数5, 激活函数'softmax'
output_layer = Dense(5)
model = Sequential([conv_layer1, max_pool1, conv_layer2, max_pool2,
                    conv_layer3, max_pool3, conv_layer4, max_pool4,
                    flatten_layer, third_dropout, hidden_layer1,
                    hidden_layer3, fif_dropout, output_layer])
"2.模型编译"
# 模型编译,2分类:binary_crossentropy
model.compile(optimizer=optimizers.Adam(lr=1e-3),
                loss=losses.CategoricalCrossentropy(from_logits=True),
                metrics=['accuracy'])
model.summary()  # 模型统计

# 回调机制 动态调整学习率
reduce = ReduceLROnPlateau(monitor='val_accuracy',  # 设置监测的值为val_accuracy
                               patience=2,  # 设置耐心容忍次数为2
                               verbose=1,  #
                               factor=0.5,  # 缩放学习率的值为0.5,学习率将以lr = lr*factor的形式被减少
                               min_lr=0.000001  # 学习率最小值0.000001
                               )   # 监控val_accuracy增加趋势

# 生成器对象1:  归一化
gen = ImageDataGenerator(rescale=1 / 255.0)
# 生成器对象2:  归一化 + 数据加强
gen1 = ImageDataGenerator(
    rescale=1 / 255.0,
    rotation_range=5,  # 图片随机旋转的角度5度
    width_shift_range=0.1,
    height_shift_range=0.1,  # 水平和竖直方向随机移动0.1
    shear_range=0.1,  # 剪切变换的程度0.1
    zoom_range=0.1,  # 随机放大的程度0.1
    fill_mode='nearest')  # 当需要进行像素填充时选择最近的像素进行填充
# 拼接训练和验证的两个路径
train_path = os.path.join(sys.path[0], 'data', 'train')
val_path = os.path.join(sys.path[0], 'data', 'val')
print('训练数据路径: ', train_path)
print('验证数据路径: ', val_path)
# 训练和验证的两个迭代器
train_iter = gen1.flow_from_directory(train_path,  # 训练train目录路径
                                      target_size=(96, 96),  # 目标图像大小统一尺寸96
                                      batch_size=8,  # 设置每次加载到内存的图像大小
                                      class_mode='categorical',  # 设置分类模型(默认one-hot编码)
                                      shuffle=True)  # 是否打乱
val_iter = gen.flow_from_directory(val_path,  # 测试val目录路径
                                   target_size=(96, 96),  # 目标图像大小统一尺寸96
                                   batch_size=8,  # 设置每次加载到内存的图像大小
                                   class_mode='categorical',  # 设置分类模型(默认one-hot编码)
                                   shuffle=True)  # 是否打乱
"3.模型训练"
# 模型的训练, model.fit
result = model.fit(train_iter,  # 设置训练数据的迭代器
                   epochs=30,  # 循环次数30次
                   validation_data=val_iter,  # 验证数据的迭代器
                   callbacks=[reduce],  # 回调机制设置为reduce
                   validation_freq=1)
"4.模型保存"
# 保存训练好的模型
model.save('my_bkm.h5')

"5.模型训练时的可视化"
# 显示训练集和验证集的acc和loss曲线
acc = result.history['accuracy']  # 获取模型训练中的accuracy
val_acc = result.history['val_accuracy']  # 获取模型训练中的val_accuracy
loss = result.history['loss']  # 获取模型训练中的loss
val_loss = result.history['val_loss']  # 获取模型训练中的val_loss
# 绘值acc曲线
plt.figure(1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()
plt.savefig('my_bkm_acc.png', dpi=600)
# 绘制loss曲线
plt.figure(2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.savefig('my_bkm_loss.png', dpi=600)
plt.show()  # 将结果显示出来



5. 宝可梦的迁移学习

from tensorflow import keras
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPool2D, BatchNormalization
from keras import optimizers, losses
from keras.preprocessing.image import ImageDataGenerator
import sys, os  # 目录结构
import matplotlib.pyplot as plt
from keras.callbacks import EarlyStopping, ReduceLROnPlateau

"1.模型建立"
net = keras.applications.DenseNet121(weights='imagenet', include_top=False,
                                     pooling='max')  # 这里使用了自带的DenseNet121网络 你也可以用keras.Sequential DIY模型
net.trainable = False
cnn_net = keras.Sequential([
    net,
    Dense(1024, activation='relu'),
    BatchNormalization(),  # BN层 标准化数据
    Dropout(rate=0.2),
    Dense(5)])
# 其要进行转换为array矩阵,其实际格式是(batch,height,width,C)
cnn_net.build(input_shape=(None, 96, 96, 3))
cnn_net.summary()

# 回调机制
reduce = ReduceLROnPlateau(monitor='val_accuracy',  # 设置监测的值为val_accuracy
                               patience=2,  # 设置耐心容忍次数为2
                               verbose=1,  #
                               factor=0.5,  # 缩放学习率的值为0.5,学习率将以lr = lr*factor的形式被减少
                               min_lr=0.000001  # 学习率最小值0.000001
                               )   # 监控val_accuracy增加趋势

"2.模型编译"
cnn_net.compile(optimizer=optimizers.Adam(lr=1e-3),
                loss=losses.CategoricalCrossentropy(from_logits=True),
                metrics=['accuracy'])
# 生成器对象1:  归一化
gen = ImageDataGenerator(rescale=1 / 255.0)
# 生成器对象2:  归一化 + 数据加强
gen1 = ImageDataGenerator(
    rescale=1 / 255.0,
    rotation_range=5,  # 图片随机旋转的角度5度
    width_shift_range=0.1,
    height_shift_range=0.1,  # 水平和竖直方向随机移动0.1
    shear_range=0.1,  # 剪切变换的程度0.1
    zoom_range=0.1,  # 随机放大的程度0.1
    fill_mode='nearest')  # 当需要进行像素填充时选择最近的像素进行填充
# 拼接训练和验证的两个路径
train_path = os.path.join(sys.path[0], 'data', 'train')
val_path = os.path.join(sys.path[0], 'data', 'val')
print('训练数据路径: ', train_path)
print('验证数据路径: ', val_path)
# 训练和验证的两个迭代器
train_iter = gen1.flow_from_directory(train_path,  # 训练train目录路径
                                      target_size=(96, 96),  # 目标图像大小统一尺寸96
                                      batch_size=8,  # 设置每次加载到内存的图像大小
                                      class_mode='categorical',  # 设置分类模型(默认one-hot编码)
                                      shuffle=True)  # 是否打乱
val_iter = gen.flow_from_directory(val_path,  # 测试val目录路径
                                   target_size=(96, 96),  # 目标图像大小统一尺寸96
                                   batch_size=8,  # 设置每次加载到内存的图像大小
                                   class_mode='categorical',  # 设置分类模型(默认one-hot编码)
                                   shuffle=True)  # 是否打乱
"3.模型训练"
# 模型的训练, model.fit
result = cnn_net.fit(train_iter,  # 设置训练数据的迭代器
                     epochs=10,  # 循环次数10次
                     validation_data=val_iter,  # 验证数据的迭代器
                     callbacks=[reduce],  # 回调机制设置为reduce
                     validation_freq=1)
"4.模型保存"
# 保存训练好的模型
cnn_net.save('my_bkm_2.h5')

"5.模型训练时的可视化"
# 显示训练集和验证集的acc和loss曲线
acc = result.history['accuracy']  # 获取模型训练中的accuracy
val_acc = result.history['val_accuracy']  # 获取模型训练中的val_accuracy
loss = result.history['loss']  # 获取模型训练中的loss
val_loss = result.history['val_loss']  # 获取模型训练中的val_loss
# 绘值acc曲线
plt.figure(1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()
plt.savefig('my_bkm_acc_2.png', dpi=600)
# 绘制loss曲线
plt.figure(2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.savefig('my_bkm_loss_2.png', dpi=600)
plt.show()  # 将结果显示出来



在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/63789.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

b站视频标题的获取(xpath、jsonpath的一个简单应用)

目录 1.目的2.代码的演示 注:该篇文章为本人原创,由于本人学习有限,若有错误或者笔误或者有问题,欢迎大家进行批评指正,谢谢。 1.目的 在b站大学上,为了更好的写笔记,本人根据学到的Python(即Py…

element vue2 动态添加 select+tree

难点在 1 添加一组一组的渲染 是往数组里push对象 循环的;但是要注意对象的结构! 因为这涉及到编辑完成后,表单提交时候的 校验! 是校验每一个select tree里边 是否勾选 2 是在后期做编辑回显的时候 保证后端返回的值 是渲染到 select中的tr…

C语言案例 按序输出多个整数-03

难度2复杂度3 题目:输入多个整数,按从小到大的顺序输出 步骤一:定义程序的目标 编写一个C程序,随机输入整数,按照从小到大的顺序输出 步骤二:程序设计 整个C程序由三大模块组成,第一个模块使…

实战项目——多功能电子时钟

一,项目要求 二,理论原理 通过按键来控制状态机的状态,在将状态值传送到各个模块进行驱动,在空闲状态下,数码管显示基础时钟,基础时钟是由7个计数器组合而成,当在ADJUST状态下可以调整时间&…

AlexNet卷积神经网络-笔记

AlexNet卷积神经网络-笔记 AlexNet卷积神经网络2012年提出 测试结果为: 通过运行结果可以发现, 在眼疾筛查数据集iChallenge-PM上使用AlexNet,loss能有效下降, 经过5个epoch的训练,在验证集上的准确率可以达到94%左右…

电源控制--品质因素Q值全解

什么是品质因素Q值? 在电源控制中,品质因素 Q 值通常用于描述电源滤波器的性能。电源滤波器用于减小电源中的噪声和干扰,以提供干净稳定的电源供应给电子设备。 品质因素 Q 值在电源滤波器中表示滤波器的带宽和中心频率之比,用于…

SpringBoot集成百度人脸识别实现登陆注册功能Demo(二)

前言 上一篇SpringBoot集成百度人脸demo中我使用的是调用本机摄像头完成人脸注册,本次demo根据业务需求的不同我采用文件上传的方式实现人脸注册。 效果演示 注册 后端响应数据: 登录 后端响应数据: 项目结构 后端代码实现 1、BaiduAiUtil…

【C++学习】STL容器——list

目录 一、list的介绍及使用 1.1 list的介绍 1.2 list的使用 1.2.1 list的构造 1.2.2 list iterator的使用 1.2.3 list capacity 1.2.4 list element access 1.2.5 list modifiers 1.2.6 list 迭代器失效 二、list的模拟实现 2.1 模拟实现list 三、list和vector的对比…

8月1日上课内容 第一章web基础与http协议

dns与域名 网络是基于tcp/ip协议进行通信和连接的 应用层--传输层---网络层----数据链路层-----物理层 ip地址,我们每一台主机都有一个唯一的地址标识(固定的ip地址),区分用户和计算机通信。 ip地址:32位二进制数组成的,不方便记忆 192.168.…

SpringMVC -- REST风格开发,RESTful快速开发、RESTful注解开发

🐌个人主页: 🐌 叶落闲庭 💨我的专栏:💨 c语言 数据结构 javaweb 石可破也,而不可夺坚;丹可磨也,而不可夺赤。 REST 一、REST简介1.1REST风格简介 二、RESTful入门案例2.…

绘制曲线python

文章目录 import matplotlib.pyplot as plt# 提供的数据 x= [1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2,2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,3,3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,4,4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,5,5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,6,6.1,6.2…

门面模式(C++)

定义 为子系统中的一组接口提供一个一致(稳定) 的界面,Facade模式定义了一个高层接口,这个接口使得这一子系统更加容易使用(复用)。 应用场景 上述A方案的问题在于组件的客户和组件中各种复杂的子系统有了过多的耦合,随着外部客户程序和各子…

代码随想录算法训练营day55

文章目录 Day55 判断子序列题目思路代码 不同的子序列题目思路代码 Day55 判断子序列 392. 判断子序列 - 力扣(LeetCode) 题目 给定字符串 s 和 t ,判断 s 是否为 t 的子序列。 字符串的一个子序列是原始字符串删除一些(也可以…

java文件

一.File类 二.扫描指定目录,并找到名称中包含指定字符的所有普通文件(不包含目录),并且后续询问用户是否要删除该文件 我的代码: import java.io.File; import java.io.IOException; import java.util.Scanner;public class Tes…

Excel功能总结

1)每一张表格上都打印表头 “页面布局”-->“打印标题”-->页面设置“工作表”页-->打印标题“顶端标题行” 如:固定第1~2行,设置成“$1:$2” 2)将页面内容打印在一页【缩印】 1.选好需要打印的区域,“页面布…

数据结构 | 利用二叉堆实现优先级队列

目录 一、二叉堆的操作 二、二叉堆的实现 2.1 结构属性 2.2 堆的有序性 2.3 堆操作 队列有一个重要的变体,叫作优先级队列。和队列一样,优先级队列从头部移除元素,不过元素的逻辑顺序是由优先级决定的。优先级最高的元素在最前&#xff…

全志D1-H (MQ-Pro)驱动 OV5640 摄像头

内核配置 运行 m kernel_menuconfig 勾选下列驱动 Device Drivers ---><*> Multimedia support --->[*] V4L platform devices ---><*> Video Multiplexer[*] SUNXI platform devices ---><*> sunxi video input (camera csi/mipi…

C++11 新特性 ---- 模板的优化

C11 模板机制:① 函数模板② 类模板模板的使用&#xff1a;① 范围&#xff1a;模板的声明或定义只能在全局或类范围进行&#xff0c;不可以在局部范围&#xff08;如函数&#xff09;② 目的&#xff1a;为了能够编写与类型无关的代码函数模板&#xff1a;- 格式&#xff1a;t…

软件工程:帕金森定律

在软件开发中&#xff0c;你是否遇到过这种情况&#xff1a; 团队要开发一个简单的购物车应用&#xff0c;项目预期时间是2周工期。负责开发的工程师默认利用完整的2周时间来完成任务。在第一周&#xff0c;工程师会认为任务很轻松&#xff0c;有充足的时间来完成任务&#xff…