一文速览Llama 3及其微调:如何通过paper-review数据集微调Llama3 8B

前言

4.19日凌晨正准备睡觉时,突然审稿项目组的文弱同学说:Meta发布Llama 3系列大语言模型了

一查,还真是

本文以大模型开发者的视角,基于Meta官方博客的介绍:Introducing Meta Llama 3: The most capable openly available LLM to date,帮你迅速梳理下LLama的关键特征,并对比上一个版本的LLama2,且本文后续,将更新用我司paper-review数据集微调llama3的训练过程

第一部分 Meta发布Llama 3:所有大模型开发者的福音

1.1 Llama 3的性能

1.1.1 在多个榜单上超越Google的gemma 7B、Mistral 7B

此次发布的Llama 3有两个版本:8B 和 70B。由于预训练和指令微调的加强,模型在推理、代码生成和指令跟踪等方面的能力得到比较大的提高,最终在多个榜单上超越Google的gemma 7B、Mistral 7B(当然了,我还是得说一句,榜单肯定能够说明一些东西,但不代表全部)

1.1.2 一套专门的评估数据集:1800个prompt 涵盖12类任务

为了更好的评估llama3的性能,Meta开发了一套新的高质量人类评估集。该评估集包含 1,800 个prompt,涵盖 12 个关键用例:寻求建议、头脑风暴、分类、封闭式问答、编码、创意写作、提取、塑造角色/角色、开放式问答、推理、重写和总结

且为了防止模型在此评估集上过度拟合,即使Meta的建模团队也无法访问它(说白了,保证评估数据集中的数据不被模型事先学到)

下图显示了Meta针对 Claude Sonnet、Mistral Medium 和 GPT-3.5 对这些类别和提示进行人工评估的汇总结果(compared to competing models of comparable size in real-world scenarios,即PK的开源模型也都是70B左右的大小)

且llama3的预训练模型这些榜单上PK同等规模的其他模型时,亦有着相对突出的表现

1.2 Llama 3:模型架构、预训练数据、扩大预训练和指令微调

1.2.1 模型架构:继续transformer解码器架构、分组查询注意力、8K上下文

和Llama 2一样,Llama 3 继续采用相对标准的decoder-only transformer架构,但做了如下几个关键的改进
  1. Llama 3 使用具有 128K tokens的tokenizer
    相当于,一方面,分词器由 SentencePiece 换为了 Tiktoken,与 GPT4 保持一致,可以更有效地对语言进行编码
    二方面,Token词表从LLAMA 2的32K拓展到了128K
  2. 为了提高 Llama 3 的推理效率,在 8B 和 70B 都采用了分组查询注意力(GQA)

    值得指出的是,上一个版本的llama 2的34B和70B才用到了GQA「详见LLaMA的解读与其微调(含LLaMA 2):Alpaca-LoRA/Vicuna/BELLE/中文LLaMA/姜子牙的第3.2节LLaMA2之分组查询注意力——Grouped-Query Attention

  3. 在 8,192 个token的序列上训练模型,且通过掩码操作以确保自注意力不会跨越文档边界
    这点相比llama 2是一个进步,毕竟llama 2的上下文长度还只有4K,所以我司审稿项目组在用平均长度8K的paper-review数据集去微调llama2时,不得已必须用上longlora/longqlora这类扩展长度的技术(详见:七月论文审稿GPT第2版:用一万多条paper-review数据微调LLaMA2 7B最终反超GPT4)

1.2.2 训练数据:15T预训练数据

做大模型开发的都知道,数据的重要性不言而喻,为进一步提高模型的性能

  1.  Llama 3 经过超过 15T token的预训练(比 Llama 2 使用的数据集大七倍,并且包含四倍多的代码,要知道,llama 2的训练数据才2T个token,即2万亿个token),这些数据全部从公开来源收集
  2. Llama 3 预训练数据集的中,其中有超过5%的部分由涵盖 30 多种语言的高质量非英语数据组成。当然,大概率上,这些语言的性能水平不会与英语相同(原因在于其只占5%罗)
  3. 为了确保 Llama 3 接受最高质量数据的训练,他们还开发了一系列数据过滤管道。这些管道包括使用启发式过滤器、NSFW 过滤器、语义重复数据删除方法和文本分类器来预测数据质量
    且使用 Llama 2 作为文本质量分类器 为 Llama 3 生成训练数据
  4. 还进行了广泛的实验,以评估在最终预训练数据集中混合不同来源的数据的最佳方法。这些实验使能够选择一个数据组合,确保 Llama 3 在各种用例(包括琐事问题、STEM、编码、历史知识等)中表现良好

 1.2.3 扩大预训练规模

​为了有效利用 Llama 3 模型中的预训练数据,他们投入了大量精力来扩大预训练规模。具体来说

  1. 为下游基准评估制定了一系列详细的缩放法则。这些缩放法则使我们能够选择最佳的数据组合,且使我们能够在实际训练模型之前预测最大模型在关键任务上的性能(例如,在 HumanEval 基准上评估的代码生成 - 见上文)
    \rightarrow  比如在 Llama 3 的开发过程中,对缩放行为进行了一些新的观察。例如,虽然 8B 参数模型的 Chinchilla 最佳训练计算量对应于约 200B 个token,但发现即使在模型建立之后,模型性能仍在继续提高接受了两个数量级以上的数据训练
    \rightarrow  在对多达 15T token进行训练后,8B 和 70B 参数模型都继续以对数线性方式改进。较大的模型可以用较少的训练计算来匹配这些较小模型的性能,但较小的模型通常是首选,因为它们在推理过程中效率更高
  2. 为了训练Llama 3的400B的版本,Meta结合了三种类型的并行化:数据并行化、模​​型并行化和管道并行化(关于这三种并行训练方法的介绍,可以参见此文:《大模型并行训练指南:通俗理解Megatron-DeepSpeed之模型并行与数据并行》)
    当同时在 16K GPU 上进行训练时,可实现每个 GPU 超过 400 TFLOPS 的计算利用率,当然,最终在两个定制的24K GPU 集群上进行了训练

    且为了最大限度地延长 GPU 的正常运行时间,开发了一种先进的新训练堆栈,可以自动执行错误检测、处理和维护。还极大地改进了硬件可靠性和静默数据损坏检测机制,并且开发了新的可扩展存储系统,以减少检查点和回滚的开销。这些改进使总体有效培训时间超过 95%
    综合起来,这些改进使 Llama 3 的训练效率比 Llama 2 提高了约三倍​

1.2.4 指令微调:SFT之外,组合了拒绝采样、PPO和DPO

为了充分释放预训练模型在聊天用例中的潜力,我们还对指令调整方法进行了创新。我们的后训练方法是监督微调SFT、拒绝采样、近端策略优化PPO(关于PPO详见此文《强化学习极简入门:通俗理解MDP、DP MC TC和Q学习、策略梯度、PPO》的第4部分),和直接策略优化DPO的组合(关于DOP则见此文:《RLHF的替代之DPO原理解析:从RLHF、Claude的RAILF到DPO、Zephyr》)

  1. SFT 中使用的prompt质量以及 PPO 和 DPO 中使用的偏好排名对对齐模型的性能有着巨大的影响。最终,在模型质量方面的一些最大改进来自于仔细整理这些数据并对人类标注者提供的标注或注释进行多轮质量保证
  2. 通过 PPO 和 DPO 从偏好排名中学习也极大地提高了 Llama 3 在推理和编码任务上的性能。即如果你向模型提出一个它难以回答的推理问题,该模型有时会产生正确的推理轨迹:模型知道如何产生正确的答案,但不知道如何选择它。但对偏好排名的训练使模型能够学习如何选择它​

1.3 其他介绍

1.3.1 与其他开源库的兼容:比如PyTorch 原生库之torchtune、LangChain等

  1. 提供了新的信任和安全工具,包括 Llama Guard 2 和 Cyber​​sec Eval 2 的更新组件,并引入了 Code Shield——一种用于过滤 LLM 生成的不安全代码的推理时间防护栏
  2. 还与torchtune共同开发了 Llama 3 ,torchtune 是新的 PyTorch 原生库,可以轻松地使用 LLM 进行创作、微调和实验。 torchtune 提供完全用 PyTorch 编写的内存高效且可破解的训练方法。该库与 Hugging Face、Weights & Biases 和 EleutherAI 等流行平台集成,甚至支持 Executorch,以便在各种移动和边缘设备上运行高效推理
  3. 提供了关于「将 Llama 3 与 LangChain 结合使用」的全面入门指南

1.3.2 负责任地部署

为了方便让开发者负责任地部署llama3,他们采用了一种新的系统级方法

​且指令微调模型已经通过内部和外部的努力进行了安全红队(测试)

红队方法利用人类专家和自动化方法来生成对抗性提示,试图引发有问题的响应。例如,我们应用全面的测试来评估与化学、生物、网络安全和其他风险领域相关的滥用风险

所有这些努力都是迭代的,并用于为正在发布的模型进行安全微调提供信息。可以在模型卡中详细了解我们的努力

  1. ​Llama Guard 模型旨在成为快速响应安全的基础,并且可以根据应用需求轻松进行微调以创建新的分类法。作为起点,新的 Llama Guard 2 使用最近宣布的MLCommons 分类法,努力支持这一重要领域行业标准的出现
  2. 此外,Cyber​​SecEval 2 在其前身的基础上进行了扩展,添加了对 LLM 允许滥用其代码解释器的倾向、攻击性网络安全功能以及对提示注入攻击的敏感性的测量(在我们的技术论文中了解更多信息)
  3. 最后,我们引入了 Code Shield,它增加了对 LLM 生成的不安全代码的推理时过滤的支持。这可以缓解不安全代码建议、代码解释器滥用预防和安全命令执行方面的风险

更多参见负责任使用指南(RUG),且正如在 RUG 中概述的那样,Meta建议根据适合应用程序的内容指南检查和过滤所有输入和输出

1.3.3 大规模部署 Llama 3

Llama 3 很快将在所有主要平台上提供,包括云提供商、模型 API 提供商等等。 Llama 3 将无处不在

基准测试显示,标记生成器提高了标记效率,与 Llama 2 相比,生成的标记最多减少了 15%。此外,Llama 3 8B 现在也添加了组查询注意 (GQA)。结果观察到,尽管与 Llama 2 7B 相比,模型的参数多了 1B,但改进的分词器效率和 GQA 有助于保持与 Llama 2 7B 相同的推理效率。

有关如何利用所有这些功能的示例,请查看Llama Recipes,其中包含所有的开源代码,这些代码可用于从微调到部署再到模型评估的所有内容

1.3.4 Llama 3 的下一步是什么?

llama 3中最大的模型有超过 400B 个参数,不过这个模型仍在训练中(后续,Meta将发布多个具有新功能的模型,包括多模态、以多种语言交谈的能力、更长的上下文窗口和更强的整体功能。且后续还将发布一份详细的研究论文)

第二部分 通过paper-review数据集微调LLama 3

llama 3出来后,为了通过paper-review的数据集微调3,有以下各种方式

  1. 不用任何框架 工具 技术,直接微调原生的llama 3,毕竟也有8k长度了
    效果不期望有多高,纯作为baseline
  2. 通过PI,把llama 3的8K长度扩展到12k,但需要什么样的机器资源,待查
    apple为主,不染为辅
  3. 通过llama factory微调3,但等他们适配3(除非我们改factory),类似
    llama factory + pi
    llama factory + longlora/longqlora 
  4. 我们自行改造longqlora(longlora也行,但所需机器资源更大),以适配3
    类似之前的经典组合:longqlora(PI + s2-Attn + qlora) + flash attention + zero3
  5. 基于xtuner微调llama 3
    三太子则在与70b微调工作不冲突的前提下,试下这个xtuner
  6. 阿里云百练大模型服务平台、百度智能云千帆大模型平台对llama 3的支持
    文弱
  7. 别人微调好的「加长版llama 3」:mattshumer/Llama-3-8B-16K
    HyperWriteAI 的 CEO Matt Shumer在其推特主页(https://twitter.com/mattshumer_/status/1782576964118675565)上宣布,他自己将 Llama-3-8B 的上下文窗口翻了一番(8k→16K),不过可惜不是instruct模型

    以下是来自huggingface的简介
    1 This is an extended (16K) context version of LLaMA 3 8B (base, not instruct). Trained for five hours on 8x A6000 GPUs, using the Yukang/LongAlpaca-16k-length dataset(即longlora作者弄的16k 数据集:https://huggingface.co/datasets/Yukang/LongAlpaca-16k-length).
    2 rope_theta was set to 1000000.0. Trained with Axolotl(即一个开源的微调框架:GitHub - OpenAccess-AI-Collective/axolotl: Go ahead and axolotl questions)

// 待更

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/569129.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于FPGA轻松玩转AI

启动人工智能应用从来没有像现在这样容易!受益于像Xilinx Zynq UltraScale MPSoC 这样的FPGA,AI现在也可以离线使用或在边缘部署、使用.可用于开发和部署用于实时推理的机器学习应用,因此将AI集成到应用中变得轻而易举。图像检测或分类、模式…

Android Studio查看viewtree

前言:之前开发过程一直看的是手机上开发者选项中的显示布局边界,开关状态需要手动来回切换,今天偶然在Android Studio中弄出了布局树觉得挺方便的。

国产FTP文件传输服务器需要具备哪些关键特性?

国产FTP文件传输服务器是指根据中国国内信息技术创新(信创)的要求和标准,自主研发的文件传输服务器软件。这类软件旨在替代传统的FTP服务器,以更好地适应国产化和信息安全的需要。国产FTP文件传输服务器通常需要具备以下要求&…

【嵌入式Linux】STM32P1开发环境搭建

要进行嵌入式Linux开发,需要在Windows、Linux和嵌入式Linux3个系统之间来回跑,需要使用多个软件工具。经过了4小时的安装(包括下载时间),我怕以后会忘记,本着互利互助的原则,我打算把这些步骤详…

分类预测 | Matlab实现RIME-BP霜冰优化BP神经网络多特征分类预测

分类预测 | Matlab实现RIME-BP霜冰优化BP神经网络多特征分类预测 目录 分类预测 | Matlab实现RIME-BP霜冰优化BP神经网络多特征分类预测分类效果基本介绍程序设计参考资料 分类效果 基本介绍 1.RIME-BP霜冰优化BP神经网络多特征分类预测(Matlab实现完整源码和数据&a…

WEB攻防-ASP中间件IIS 短文件名探针安全漏洞

IIS短文件名探针安全漏洞是一个与IIS(Internet Information Services)服务相关的安全问题。该漏洞主要是由于HTTP请求中使用了旧DOS 8.3名称约定(SFN)的代字符(〜)波浪号,这使得远程攻击者有可能…

用C语言做一个小游戏:贪吃蛇(初阶)

1.整体思路规划 首先设计贪吃蛇就要先设计出一个游戏初始的界面以及要让玩家知道相应的游戏规则,其次要设计出一个地图来限制贪吃蛇的运动范围,那么就要初始化一条蛇,以及一个食物和其他功能,比如加速减速、暂停、食物的分数以及总…

PYTHON用[邻接列表]及[邻接矩阵]来存储无向图

# 图可以根据边的性质进行分类:# 有向图(Directed Graph):在有向图中,边是有方向性的,从一个节点指向另一个节点。这意味着从节点 A 到节点 B 的边与从节点 B 到节点 A 的边可以是不同的,或者根…

58岁第一代「晶女郎」激罕现身

90年代性感女神关秀媚在2006年拍完内地剧集《暴雨梨花》后更全面息影,而且更甚少现身于人前。日前曾志伟庆祝71岁生日,举行盛大慈善素宴广邀圈中好友,为寺庙重建工程筹募经费。女神关秀媚便罕有接受访问透露近况。 当天关秀媚将头发盘起&…

【大数据】LSM树,专为海量数据读写而生的数据结构

目录 1.什么是LSM树? 2.LSM树的落地实现 1.什么是LSM树? LSM树(Log-Structured Merge Tree)是一种专门针对大量写操作做了优化的数据存储结构,尤其适用于现代大规模数据处理系统,如NoSQL数据库&#xff…

【Java--数据结构】“从扑克到程序:深入探讨洗牌算法的原理与魅力“

前言 以下是学习Java顺序表的一个实例应用———简单的洗牌算法。 欢迎关注个人主页:逸狼 创造不易,可以点点赞吗~ 如有错误,欢迎指出~ 目录 前言 定义每张扑克牌的属性 生成一副扑克牌(不包含大小王) 洗牌方法 发牌方…

AI视频下载:零基础2小时学会开发 Chrome扩展程序

无论您是有抱负的Web开发人员、AI爱好者还是生产力黑客,本课程都提供了宝贵的见解和实践经验,帮助您利用AI和Chrome扩展的力量来简化Web自动化,改善各个行业和领域的用户体验,解锁AI驱动生产力的潜力! 此课程面向以下…

如何计算加速开发的实际价值

投资回报率(ROI)已成为在企业中引进工具、方法或者策略时必须考虑的关键指标。 尽管如此,在某些情况下,ROI 很容易衡量,而在其他情况下,则往往只衡量结果——金钱。这种评估角度是有效且必要的&#xff0c…

K-means聚类算法:如何在杂乱无章的数据中找出规律?

什么是K-means聚类算法? 在编程的世界里,K-means聚类算法就像一位无私的指路人,它不需要我们给出明确的指示,只需要我们提供数据,它就能帮助我们找到数据的归属,找到数据的“家”。 K-means聚类算法的名字…

石化盈科PMO总经理任志婷受邀为第十三届中国PMO大会演讲嘉宾

全国PMO专业人士年度盛会 石化盈科信息技术有限责任公司运营管理部总经理兼PMO总经理任志婷女士受邀为PMO评论主办的2024第十三届中国PMO大会演讲嘉宾,演讲议题为“组织级项目管理的初心和使命——打造卓越的IT企业PMO”。大会将于5月25-26日在北京举办,…

碳课堂|什么是碳市场?如何进行碳交易?

近年来,随着全球变暖问题日益受到重视,碳达峰、碳中和成为国际社会共识,为更好地减缓和适应气候变化,同时降低碳关税风险,以“二氧化碳的排放权利”为商品的碳交易和碳市场应时而生。 一、什么是碳交易、碳市场 各国…

BootStrap框架学习

1、BootStrap是一套现成的css样式集合 中文文档:www.bootcss.com 响应式布局:pc端,手机端都可适配 特点:集成了html,css,javascript工具集,12列格网,基于jquery, 下载:http://v3…

【大语言模型LLM】- Meta开源推出的新一代大语言模型 Llama 3

🔥博客主页:西瓜WiFi 🎥系列专栏:《大语言模型》 很多非常有趣的模型,值得收藏,满足大家的收集癖! 如果觉得有用,请三连👍⭐❤️,谢谢! 长期不…

在 Slurm 上运行 Jupyter

1. 背景介绍 现在的大模型训练越来越深入每个组了,大规模集群系统也应用的愈发广泛。一般的slurm系统提交作业分为2种,一种是srun,这种所见即所得的申请方式一般适用于短期的调试使用,大概一般允许的时间从几个小时到1天左右&…

使用 FFMPEG 实现录屏和录音

FFmpeg 是一个非常强大的开源工具,它可以用来处理音频和视频。 要使用 FFmpeg 进行录屏和录音,需要首先确保你的系统已经安装了 FFmpeg。在大多数 Linux 发行版中,可以通过包管理器(如 apt 或 yum)来安装。在 Windows …