Harmony鸿蒙南向驱动开发-UART

UART指异步收发传输器(Universal Asynchronous Receiver/Transmitter),是通用串行数据总线,用于异步通信。该总线双向通信,可以实现全双工传输。

两个UART设备的连接示意图如下,UART与其他模块一般用2线(图1)或4线(图2)相连,它们分别是:

  • TX:发送数据端,和对端的RX相连。

  • RX:接收数据端,和对端的TX相连。

  • RTS:发送请求信号,用于指示本设备是否准备好,可接受数据,和对端CTS相连。

  • CTS:允许发送信号,用于判断是否可以向对端发送数据,和对端RTS相连。

图 1 2线UART设备连接示意图

2线UART设备连接示意图

图 2 4线UART设备连接示意图

4线UART设备连接示意图

UART通信之前,收发双方需要约定好一些参数:波特率、数据格式(起始位、数据位、校验位、停止位)等。通信过程中,UART通过TX发送给对端数据,通过RX接收对端发送的数据。当UART接收缓存达到预定的门限值时,RTS变为不可发送数据,对端的CTS检测到不可发送数据,则停止发送数据。

基本概念

  • 异步通信

    异步通信中,数据通常以字符或者字节为单位组成字符帧传送。字符帧由发送端逐帧发送,通过传输线被接收设备逐帧接收。发送端和接收端可以由各自的时钟来控制数据的发送和接收,这两个时钟源彼此独立,互不同步。异步通信以一个字符为传输单位,通信中两个字符间的时间间隔是不固定的,然而在同一个字符中的两个相邻位代码间的时间间隔是固定的。

  • 全双工传输(Full Duplex)

    此通信模式允许数据在两个方向上同时传输,它在能力上相当于两个单工通信方式的结合。全双工可以同时进行信号的双向传输。

运作机制

在HDF框架中,UART接口适配模式采用独立服务模式(如图3所示)。在这种模式下,每一个设备对象会独立发布一个设备服务来处理外部访问,设备管理器收到API的访问请求之后,通过提取该请求的参数,达到调用实际设备对象的相应内部方法的目的。独立服务模式可以直接借助HDF设备管理器的服务管理能力,但需要为每个设备单独配置设备节点,增加内存占用。

独立服务模式下,核心层不会统一发布一个服务供上层使用,因此这种模式下驱动要为每个控制器发布一个服务,具体表现为:

  • 驱动适配者需要实现HdfDriverEntry的Bind钩子函数以绑定服务。

  • device_info.hcs文件中deviceNode的policy字段为1或2,不能为0。

UART模块各分层作用:

  • 接口层提供打开UART设备、UART设备读取指定长度数据、UART设备写入指定长度数据、设置UART设备波特率、获取设UART设备波特率、设置UART设备属性、获取UART设备波特率、设置UART设备传输模式、关闭UART设备的接口。

  • 核心层主要提供UART控制器的创建、移除以及管理的能力,通过钩子函数与适配层交互。

  • 适配层主要是将钩子函数的功能实例化,实现具体的功能。

图 3 UART独立服务模式结构图

UART独立服务模式结构图

开发指导

场景介绍

UART模块应用比较广泛,主要用于实现设备之间的低速串行通信,例如输出打印信息,当然也可以外接各种模块,如GPS、蓝牙等。当驱动开发者需要将UART设备适配到OpenHarmony时,需要进行UART驱动适配。下文将介绍如何进行UART驱动适配。

接口说明

为了保证上层在调用UART接口时能够正确的操作UART控制器,核心层在//drivers/hdf_core/framework/support/platform/include/uart/uart_core.h中定义了以下钩子函数,驱动适配者需要在适配层实现这些函数的具体功能,并与钩子函数挂接,从而完成适配层与核心层的交互。

UartHostMethod定义:

struct UartHostMethod {
    int32_t (*Init)(struct UartHost *host);
    int32_t (*Deinit)(struct UartHost *host);
    int32_t (*Read)(struct UartHost *host, uint8_t *data, uint32_t size);
    int32_t (*Write)(struct UartHost *host, uint8_t *data, uint32_t size);
    int32_t (*GetBaud)(struct UartHost *host, uint32_t *baudRate);
    int32_t (*SetBaud)(struct UartHost *host, uint32_t baudRate);
    int32_t (*GetAttribute)(struct UartHost *host, struct UartAttribute *attribute);
    int32_t (*SetAttribute)(struct UartHost *host, struct UartAttribute *attribute);
    int32_t (*SetTransMode)(struct UartHost *host, enum UartTransMode mode);
    int32_t (*pollEvent)(struct UartHost *host, void *filep, void *table);
};

表 1 UartHostMethod结构体成员的回调函数功能说明

函数入参出参返回值功能
Inithost:结构体指针,核心层UART控制器HDF_STATUS相关状态初始化Uart设备
Deinithost:结构体指针,核心层UART控制器HDF_STATUS相关状态去初始化Uart设备
Readhost:结构体指针,核心层UART控制器
size:uint32_t类型,接收数据大小
data:uint8_t类型指针,接收的数据HDF_STATUS相关状态接收数据RX
Writehost:结构体指针,核心层UART控制器
data:uint8_t类型指针,传入数据
size:uint32_t类型,发送数据大小
HDF_STATUS相关状态发送数据TX
SetBaudhost:结构体指针,核心层UART控制器
baudRate:uint32_t类型,波特率传入值
HDF_STATUS相关状态设置波特率
GetBaudhost:结构体指针,核心层UART控制器baudRate:uint32_t类型指针,传出的波特率HDF_STATUS相关状态获取当前设置的波特率
GetAttributehost:结构体指针,核心层UART控制器attribute:结构体指针,传出的属性值(见uart_if.h中UartAttribute定义)HDF_STATUS相关状态获取设备uart相关属性
SetAttributehost:结构体指针,核心层UART控制器
attribute:结构体指针,属性传入值
HDF_STATUS相关状态设置设备UART相关属性
SetTransModehost:结构体指针,核心层UART控制器
mode:枚举值(见uart_if.h中UartTransMode定义),传输模式
HDF_STATUS相关状态设置传输模式
PollEventhost:结构体指针,核心层UART控制器
filep:void类型指针filep
table:void类型指针table
HDF_STATUS相关状态poll轮询机制

开发步骤

UART模块适配HDF框架包含以下四个步骤:

  • 实例化驱动入口

  • 配置属性文件

  • 实例化UART控制器对象

  • 驱动调试

开发实例

下方将基于Hi3516DV300开发板以//device/soc/hisilicon/common/platform/uart/uart_hi35xx.c驱动为示例,展示需要驱动适配者提供哪些内容来完整实现设备功能。

  1. 实例化驱动入口

    驱动入口必须为HdfDriverEntry(在hdf_device_desc.h中定义)类型的全局变量,且moduleName要和device_info.hcs中保持一致。HDF框架会将所有加载的驱动的HdfDriverEntry对象首地址汇总,形成一个类似数组的段地址空间,方便上层调用。

    一般在加载驱动时HDF会先调用Bind函数,再调用Init函数加载该驱动。当Init调用异常时,HDF框架会调用Release释放驱动资源并退出。

    UART驱动入口开发参考:

    struct HdfDriverEntry g_hdfUartDevice = {
        .moduleVersion = 1,
        .moduleName = "HDF_PLATFORM_UART",    // 【必要且与HCS文件中里面的moduleName匹配】
        .Bind = HdfUartDeviceBind,            // 挂接UART模块Bind实例化
        .Init = HdfUartDeviceInit,            // 挂接UART模块Init实例化
        .Release = HdfUartDeviceRelease,      // 挂接UART模块Release实例化
    };
    HDF_INIT(g_hdfUartDevice);                // 调用HDF_INIT将驱动入口注册到HDF框架中
  2. 配置属性文件

    完成驱动入口注册之后,需要在device_info.hcs文件中添加deviceNode信息,deviceNode信息与驱动入口注册相关。本例以两个UART控制器为例,如有多个器件信息,则需要在device_info.hcs文件增加对应的deviceNode信息,以及在uart_config.hcs文件中增加对应的器件属性。器件属性值与核心层UartHost成员的默认值或限制范围有密切关系,比如UART设备端口号,需要在uart_config.hcs文件中增加对应的器件属性。

    独立服务模式的特点是device_info.hcs文件中设备节点代表着一个设备对象,如果存在多个设备对象,则按需添加,注意服务名与驱动私有数据匹配的关键字名称必须唯一。其中各项参数如表2所示:

    表 2 device_info.hcs节点参数说明

    成员名
    policy驱动服务发布的策略,UART控制器具体配置为2,表示驱动对内核态和用户态都发布服务
    priority驱动启动优先级(0-200),值越大优先级越低。UART控制器具体配置为40
    permission驱动创建设备节点权限,UART控制器具体配置为0664
    moduleName驱动名称,UART控制器固定为HDF_PLATFORM_UART
    serviceName驱动对外发布服务的名称,UART控制器服务名设置为HDF_PLATFORM_UART_X,X代表UART控制器编号
    deviceMatchAttr驱动私有数据匹配的关键字,UART控制器设置为hisilicon_hi35xx_uart_X ,X代表UART控制器编号
    • device_info.hcs 配置参考:

      在//vendor/hisilicon/hispark_taurus/hdf_config/device_info/device_info.hcs文件中添加deviceNode描述。

      root {
          device_info {
              match_attr = "hdf_manager";
              platform :: host {
                  hostName = "platform_host";
                  priority = 50;
                  device_uart :: device {
                      device0 :: deviceNode {
                          policy = 1;                                   // 驱动服务发布的策略,policy大于等于1(用户态可见为2,仅内核态可见为1)。
                          priority = 40;                                // 驱动启动优先级
                          permission = 0644;                            // 驱动创建设备节点权限
                          moduleName = "HDF_PLATFORM_UART";             // 驱动名称,该字段的值必须和驱动入口结构的moduleName值一致。
                          serviceName = "HDF_PLATFORM_UART_0";          // 驱动对外发布服务的名称,必须唯一,必须要按照HDF_PLATFORM_UART_X的格式,X为UART控制器编号。
                          deviceMatchAttr = "hisilicon_hi35xx_uart_0";  // 驱动私有数据匹配的关键字,必须和驱动私有数据配置表中的match_attr值一致。
                      }
                      device1 :: deviceNode {
                        policy = 2;
                        permission = 0644;
                        priority = 40;
                        moduleName = "HDF_PLATFORM_UART"; 
                        serviceName = "HDF_PLATFORM_UART_1";
                        deviceMatchAttr = "hisilicon_hi35xx_uart_1";
                      }
                      ......                                            // 如果存在多个UART设备时【必须】添加节点,否则不用
                  }
              }
          }
      }
    • uart_config.hcs 配置参考:

      在//device/soc/hisilicon/hi3516dv300/sdk_liteos/hdf_config/uart/uart_config.hcs文件配置器件属性,其中配置参数如下:

      root {
          platform {
              template uart_controller {                   // 配置模板,如果下面节点使用时继承该模板,则节点中未声明的字段会使用该模板中的默认值
                  match_attr = "";
                  num = 0;                                 // 【必要】端口号
                  baudrate = 115200;                       // 【必要】波特率,数值可按需填写
                  fifoRxEn = 1;                            // 【必要】使能接收FIFO
                  fifoTxEn = 1;                            // 【必要】使能发送FIFO
                  flags = 4;                               // 【必要】标志信号
                  regPbase = 0x120a0000;                   // 【必要】地址映射需要
                  interrupt = 38;                          // 【必要】中断号
                  iomemCount = 0x48;                       // 【必要】地址映射需要
              }
              controller_0x120a0000 :: uart_controller {
                  match_attr = "hisilicon_hi35xx_uart_0";  // 【必要】必须和device_info.hcs中对应的设备的deviceMatchAttr值一致
              }
              controller_0x120a1000 :: uart_controller {
                  num = 1;
                  baudrate = 9600;
                  regPbase = 0x120a1000;
                  interrupt = 39;
                  match_attr = "hisilicon_hi35xx_uart_1";
              }
              ......                                       // 如果存在多个UART设备时【必须】添加节点,否则不用
          }
      }

      需要注意的是,新增uart_config.hcs配置文件后,必须在产品对应的hdf.hcs文件中将其包含如下语句所示,否则配置文件无法生效。

      例如:本例中uart_config.hcs所在路径为device/soc/hisilicon/hi3516dv300/sdk_liteos/hdf_config/uart/uart_config.hcs,则必须在产品对应的hdf.hcs中添加如下语句:

      #include "../../../../device/soc/hisilicon/hi3516dv300/sdk_liteos/hdf_config/uart/uart_config.hcs" // 配置文件相对路径
  3. 实例化UART控制器对象

    完成属性文件配置之后,下一步就是以核心层UartHost对象的初始化为核心,包括驱动适配者自定义结构体(传递参数和数据),实例化UartHost成员UartHostMethod(让用户可以通过接口来调用驱动底层函数),实现HdfDriverEntry成员函数(Bind、Init、Release)。

    • 驱动适配者自定义结构体参考

      从驱动的角度看,驱动适配者自定义结构体是参数和数据的载体,而且uart_config.hcs文件中的数值会被HDF读入并通过DeviceResourceIface来初始化结构体成员,一些重要数值也会传递给核心层对象,例如端口号。

      struct UartPl011Port {                       // 驱动适配者自定义管脚描述结构体
          int32_t enable;
          unsigned long physBase;                  // 物理地址
          uint32_t irqNum;                         // 中断号
          uint32_t defaultBaudrate;                // 默认波特率
          uint32_t flags;                          // 标志信号,下面三个宏与之相关
      #define PL011_FLG_IRQ_REQUESTED    (1 << 0)
      #define PL011_FLG_DMA_RX_REQUESTED (1 << 1)
      #define PL011_FLG_DMA_TX_REQUESTED (1 << 2)
          struct UartDmaTransfer *rxUdt;           // DMA传输相关
          struct UartDriverData *udd;
      };
      struct UartDriverData {                      // 数据传输相关的结构体
          uint32_t num;                            // 端口号
          uint32_t baudrate;                       // 波特率(可设置)
          struct UartAttribute attr;               // 数据位、停止位等传输属性相关
          struct UartTransfer *rxTransfer;         // 缓冲区相关,可理解为FIFO结构
          wait_queue_head_t wait;                  // 条件变量相关的排队等待信号
          int32_t count;                           // 数据数量
          int32_t state;                           // UART控制器状态
      #define UART_STATE_NOT_OPENED 0
      #define UART_STATE_OPENING    1
      #define UART_STATE_USEABLE    2
      #define UART_STATE_SUSPENDED  3
          uint32_t flags;                          // 状态标志
      #define UART_FLG_DMA_RX       (1 << 0)
      #define UART_FLG_DMA_TX       (1 << 1)
      #define UART_FLG_RD_BLOCK     (1 << 2)
          RecvNotify recv;                         // 函数指针类型,指向串口数据接收函数
          struct UartOps *ops;                     // 自定义函数指针结构体
          void *private;                           // 私有数据
      };
      
      // UartHost是核心层控制器结构体,其中的成员在Init函数中会被赋值。
      struct UartHost {
          struct IDeviceIoService service;         // 驱动服务
          struct HdfDeviceObject *device;          // 驱动设备对象
          uint32_t num;                            // 端口号
          OsalAtomic atom;                         // 原子量
          void *priv;                              // 私有数据
          struct UartHostMethod *method;           // 回调函数
      };
    • UartHost成员回调函数结构体UartHostMethod的实例化。

      // uart_hi35xx.c 中的示例:钩子函数的实例化
      struct UartHostMethod g_uartHostMethod = {
          .Init = Hi35xxInit,                     // 初始化
          .Deinit = Hi35xxDeinit,                 // 去初始化
          .Read = Hi35xxRead,                     // 接收数据
          .Write = Hi35xxWrite,                   // 发送数据
          .SetBaud = Hi35xxSetBaud,               // 设置波特率
          .GetBaud = Hi35xxGetBaud,               // 获取波特率
          .SetAttribute = Hi35xxSetAttribute,     // 设置设备属性
          .GetAttribute = Hi35xxGetAttribute,     // 获取设备属性
          .SetTransMode = Hi35xxSetTransMode,     // 设置传输模式
          .pollEvent = Hi35xxPollEvent,           // 轮询
      };
    • Bind函数开发参考

      入参:

      HdfDeviceObject:HDF框架给每一个驱动创建的设备对象,用来保存设备相关的私有数据和服务接口。

      返回值:

      HDF_STATUS相关状态(表3为部分展示,如需使用其他状态,可参考//drivers/hdf_core/interfaces/inner_api/utils/hdf_base.h中HDF_STATUS中HDF_STATUS定义)。

      表 3 HDF_STATUS相关状态说明

      状态(值)问题描述
      HDF_ERR_INVALID_OBJECT控制器对象非法
      HDF_ERR_MALLOC_FAIL内存分配失败
      HDF_ERR_INVALID_PARAM参数非法
      HDF_ERR_IOI/O 错误
      HDF_SUCCESS初始化成功
      HDF_FAILURE初始化失败

      函数说明:

      初始化自定义结构体对象,初始化UartHost成员。

      //uart_hi35xx.c
      static int32_t HdfUartDeviceBind(struct HdfDeviceObject *device)
      {
          ......
          return (UartHostCreate(device) == NULL) ? HDF_FAILURE : HDF_SUCCESS; // 【必须】调用核心层函数UartHostCreate
      }
      
      // uart_core.c核心层UartHostCreate函数说明
      struct UartHost *UartHostCreate(struct HdfDeviceObject *device)
      {
          struct UartHost *host = NULL;                                        // 新建UartHost
          ......                                                                  
          host = (struct UartHost *)OsalMemCalloc(sizeof(*host));              // 分配内存
          ......
          host->device = device;                                               // 【必要】使HdfDeviceObject与UartHost可以相互转化的前提
          device->service = &(host->service);                                  // 【必要】使HdfDeviceObject与UartHost可以相互转化的前提
          host->device->service->Dispatch = UartIoDispatch;                    // 为service成员的Dispatch方法赋值
          OsalAtomicSet(&host->atom, 0);                                       // 原子量初始化或者原子量设置
          host->priv = NULL;
          host->method = NULL;
          return host;
      }
    • Init函数开发参考

      入参:

      HdfDeviceObject:HDF框架给每一个驱动创建的设备对象,用来保存设备相关的私有数据和服务接口。

      返回值:

      HDF_STATUS相关状态。

      函数说明:

      初始化自定义结构体对象,初始化UartHost成员,调用核心层UartAddDev函数,完成UART控制器的添加,接入VFS。

      int32_t HdfUartDeviceInit(struct HdfDeviceObject *device)
      {
          int32_t ret;
          struct UartHost *host = NULL;
          HDF_LOGI("%s: entry", __func__);
          ......
          host = UartHostFromDevice(device);                                           // 通过service成员后强制转为UartHost,赋值是在Bind函数中
          ......                                    
          ret = Hi35xxAttach(host, device);                                            // 完成UartHost对象的初始化,见下
          ......                                   
          host->method = &g_uartHostMethod;                                            // UartHostMethod的实例化对象的挂载
          return ret;
      }
      // 完成UartHost对象的初始化。
      static int32_t Hi35xxAttach(struct UartHost *host, struct HdfDeviceObject *device)
      {
          int32_t ret;
          struct UartDriverData *udd = NULL;                                           // udd和port对象是驱动适配者自定义的结构体对象,可根据需要实现相关功能
          struct UartPl011Port *port = NULL;
          ......
          // 【必要】步骤【1】~【7】主要实现对udd对象的实例化赋值,然后赋值给核心层UartHost对象。
          udd = (struct UartDriverData *)OsalMemCalloc(sizeof(*udd));                  // 【1】
          ......
          port = (struct UartPl011Port *)OsalMemCalloc(sizeof(struct UartPl011Port));  // 【2】
          ......
          udd->ops = Pl011GetOps();                                                    // 【3】设备开启、关闭、属性设置、发送操作等函数挂载。
          udd->recv = PL011UartRecvNotify;                                             // 【4】数据接收通知函数(条件锁机制)挂载
          udd->count = 0;                                                              // 【5】
          port->udd = udd;                                                             // 【6】使UartPl011Port与UartDriverData可以相互转化的前提
          ret = UartGetConfigFromHcs(port, device->property);                          // 将HdfDeviceObject的属性传递给驱动适配者自定义结构体,用于相关操作,示例代码见下
          ......
          udd->private = port;                                                         // 【7】
          host->priv = udd;                                                            // 【必要】使UartHost与UartDriverData可以相互转化的前提
          host->num = udd->num;                                                        // 【必要】UART设备号
          UartAddDev(host);                                                            // 【必要】核心层uart_dev.c中的函数,作用:注册一个字符设备节点到vfs,这样从用户态可以通过这个虚拟文件节点访问UART  
          return HDF_SUCCESS;
      }
      
      static int32_t UartGetConfigFromHcs(struct UartPl011Port *port, const struct DeviceResourceNode *node)
      {
          uint32_t tmp, regPbase, iomemCount;
          struct UartDriverData *udd = port->udd;
          struct DeviceResourceIface *iface = DeviceResourceGetIfaceInstance(HDF_CONFIG_SOURCE); 
          ......
          // 通过请求参数提取相应的值,并赋值给驱动适配者自定义的结构体。
          if (iface->GetUint32(node, "num", &udd->num, 0) != HDF_SUCCESS) {
              HDF_LOGE("%s: read busNum fail", __func__);
              return HDF_FAILURE;
          }
          ......
          return 0;
      }
    • Release函数开发参考

      入参:

      HdfDeviceObject:HDF框架给每一个驱动创建的设备对象,用来保存设备相关的私有数据和服务接口。

      返回值:

      无。

      函数说明:

      该函数需要在驱动入口结构体中赋值给Release接口,当HDF框架调用Init函数初始化驱动失败时,可以调用Release释放驱动资源,该函数中需包含释放内存和删除控制器等操作。

      说明:
      所有强制转换获取相应对象的操作前提是在Init函数中具备对应赋值的操作。

      void HdfUartDeviceRelease(struct HdfDeviceObject *device)
      {
          struct UartHost *host = NULL;
          ...
          host = UartHostFromDevice(device);           // 这里有HdfDeviceObject到UartHost的强制转化,通过service成员,赋值见Bind函数。
          ...                                          
          if (host->priv != NULL) {                    
              Hi35xxDetach(host);                      // 驱动适配自定义的内存释放函数,见下。
          }                                            
          UartHostDestroy(host);                       // 调用核心层函数释放host
      }
      
      static void Hi35xxDetach(struct UartHost *host)
      {
          struct UartDriverData *udd = NULL;
          struct UartPl011Port *port = NULL;
          ...
          udd = host->priv;                            // 这里有UartHost到UartDriverData的转化
          ...                                          
          UartRemoveDev(host);                         // VFS注销
          port = udd->private;                         // 这里有UartDriverData到UartPl011Port的转化
          if (port != NULL) {                          
              if (port->physBase != 0) {               
                  OsalIoUnmap((void *)port->physBase); // 地址反映射
              }
              OsalMemFree(port);
              udd->private = NULL;
          }
          OsalMemFree(udd);                            // 释放UartDriverData
          host->priv = NULL;
      }
  4. 驱动调试

    【可选】针对新增驱动程序,建议验证驱动基本功能,例如挂载后的信息反馈,数据传输的成功与否等。

最后

有很多小伙伴不知道学习哪些鸿蒙开发技术?不知道需要重点掌握哪些鸿蒙应用开发知识点?而且学习时频繁踩坑,最终浪费大量时间。所以有一份实用的鸿蒙(HarmonyOS NEXT)资料用来跟着学习是非常有必要的。 

这份鸿蒙(HarmonyOS NEXT)资料包含了鸿蒙开发必掌握的核心知识要点,内容包含了ArkTS、ArkUI开发组件、Stage模型、多端部署、分布式应用开发、音频、视频、WebGL、OpenHarmony多媒体技术、Napi组件、OpenHarmony内核、Harmony南向开发、鸿蒙项目实战等等)鸿蒙(HarmonyOS NEXT)技术知识点。

希望这一份鸿蒙学习资料能够给大家带来帮助,有需要的小伙伴自行领取,限时开源,先到先得~无套路领取!!

获取这份完整版高清学习路线,请点击→纯血版全套鸿蒙HarmonyOS学习资料

鸿蒙(HarmonyOS NEXT)最新学习路线

  •  HarmonOS基础技能

  • HarmonOS就业必备技能 
  •  HarmonOS多媒体技术

  • 鸿蒙NaPi组件进阶

  • HarmonOS高级技能

  • 初识HarmonOS内核 
  • 实战就业级设备开发

有了路线图,怎么能没有学习资料呢,小编也准备了一份联合鸿蒙官方发布笔记整理收纳的一套系统性的鸿蒙(OpenHarmony )学习手册(共计1236页)鸿蒙(OpenHarmony )开发入门教学视频,内容包含:ArkTS、ArkUI、Web开发、应用模型、资源分类…等知识点。

获取以上完整版高清学习路线,请点击→纯血版全套鸿蒙HarmonyOS学习资料

《鸿蒙 (OpenHarmony)开发入门教学视频》

《鸿蒙生态应用开发V2.0白皮书》

图片

《鸿蒙 (OpenHarmony)开发基础到实战手册》

OpenHarmony北向、南向开发环境搭建

图片

 《鸿蒙开发基础》

  • ArkTS语言
  • 安装DevEco Studio
  • 运用你的第一个ArkTS应用
  • ArkUI声明式UI开发
  • .……

图片

 《鸿蒙开发进阶》

  • Stage模型入门
  • 网络管理
  • 数据管理
  • 电话服务
  • 分布式应用开发
  • 通知与窗口管理
  • 多媒体技术
  • 安全技能
  • 任务管理
  • WebGL
  • 国际化开发
  • 应用测试
  • DFX面向未来设计
  • 鸿蒙系统移植和裁剪定制
  • ……

图片

《鸿蒙进阶实战》

  • ArkTS实践
  • UIAbility应用
  • 网络案例
  • ……

图片

 获取以上完整鸿蒙HarmonyOS学习资料,请点击→纯血版全套鸿蒙HarmonyOS学习资料

总结

总的来说,华为鸿蒙不再兼容安卓,对中年程序员来说是一个挑战,也是一个机会。只有积极应对变化,不断学习和提升自己,他们才能在这个变革的时代中立于不败之地。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/533409.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

算法打卡day42|动态规划篇10| Leetcode 121. 买卖股票的最佳时机、122.买卖股票的最佳时机II

算法题 Leetcode 121. 买卖股票的最佳时机 题目链接:121. 买卖股票的最佳时机 大佬视频讲解&#xff1a;121. 买卖股票的最佳时机视频讲解 个人思路 这道题之前贪心算法做过&#xff0c;当然动规也能解决这道题 解法 贪心法 取最左最小值&#xff0c;取最右最大值&#x…

CSS设置首字母大小写和首行样式

一、首字母大小写 1.代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, initial-scale1.0" /><title>Document</title&…

顺序表(增删减改)+通讯录项目(数据结构)

什么是顺序表 顺序表和数组的区别 顺序表本质就是数组 结构体初阶进阶 系统化的学习-CSDN博客 简单解释一下&#xff0c;就像大家去吃饭&#xff0c;然后左边是苍蝇馆子&#xff0c;右边是修饰过的苍蝇馆子&#xff0c;但是那个好看的苍蝇馆子一看&#xff0c;这不行啊&a…

校园论坛系统

文章目录 校园论坛系统一、项目演示二、项目介绍三、10000字论文参考四、系统部分功能截图五、部分代码展示六、底部获取项目和10000字论文参考&#xff08;9.9&#xffe5;&#xff09; 校园论坛系统 一、项目演示 校园论坛系统 二、项目介绍 基于springbootvue的前后端分离…

【JSON2WEB】 13 基于REST2SQL 和 Amis 的 SQL 查询分析器

【JSON2WEB】01 WEB管理信息系统架构设计 【JSON2WEB】02 JSON2WEB初步UI设计 【JSON2WEB】03 go的模板包html/template的使用 【JSON2WEB】04 amis低代码前端框架介绍 【JSON2WEB】05 前端开发三件套 HTML CSS JavaScript 速成 【JSON2WEB】06 JSON2WEB前端框架搭建 【J…

antd+Vue 3实现table行内upload文件图片上传【超详细图解】

目录 一、背景 二、效果图 三、代码 一、背景 一名被组长逼着干前端的苦逼后端&#xff0c;在一个晴天霹雳的日子&#xff0c;被要求前端订单产品实现上传产品图片并立刻回显图片。 二、效果图 三、代码 <template><a-table :dataSource"dataSource" :c…

前端三剑客 —— JavaScript (第七节)

内容回顾 DOM编程 document对象 有属性 有方法 节点类型 元素节点 属性节点 文本节点 操作DOM属性 DOM对象.属性名称 DOM对象[属性名称] 调用DOM对象的API 操作DOM样式 获取有单位的样式值 标签对象.style.样式名称&#xff0c;这种方式只能操作行内样式。 使用getComputedSty…

[Linux][进程概念][进程优先级]详细解读

目录&#xff09; 0.冯诺依曼体系结构1.操作系统(Operator System)1.概念2.设计OS的目的3.定位4.系统调用和库函数概念5.总结 2.进程1.基本概念2.描述进程 -- PCB3.task_struct内容分类4.组织进程5.查看进程6.通过系统调用获取进程标识符7.通过系统调用创建进程 -- fork初识8.进…

44---MSATA电路设计

视频链接 mSATA & mini-pcie电路设计01_哔哩哔哩_bilibili mSATA电路设计 1、mSATA简介 1.1、mSATA基本介绍 mSATA接口是标准SATA的迷你版本&#xff0c;通过mini PCI-E界面传输信号&#xff0c;传输速度支持1.5Gbps、3Gbps、6Gbps三种模式。mSATA接口的诞生&#xff…

数据可视化的3D问题

三维对象非常流行&#xff0c;但在大多数情况下会对解释图形的准确性和速度产生负面影响。 以下是对涉及 3d 的主要图形类型的回顾&#xff0c;并讨论了它们是否被认为是不好的做法。 1、3D 条形图&#xff1a;不要 这是一个 3d 条形图。 你可能很熟悉这种图形&#xff0c;因为…

自学嵌入式,已经会用stm32做各种小东西了,下一步是什么,研究stm32的内部吗?

是的&#xff0c;深入研究STM32的内部是一个很好的下一步。我这里有一套嵌入式入门教程&#xff0c;不仅包含了详细的视频讲解&#xff0c;项目实战。如果你渴望学习嵌入式&#xff0c;不妨点个关注&#xff0c;给个评论222&#xff0c;私信22&#xff0c;我在后台发给你。 了…

【Vue + keep-alive】路由缓存

一. 需求 列表页&#xff0c;n 条数据项可打开 n 个标签页&#xff0c;同时1条数据项的查看和编辑共用一个标签页。如下所示&#xff1a; 参考 // 主页面 // 解决因 路由缓存&#xff0c;导致 编辑后跳转到该页面 不能实时更新数据 onActivated(() > {getList() })二. 实现…

Java面试题戏剧

目录 第一幕 、第一场&#xff09;某大厦楼下大门前第二场&#xff09;电梯中第三场&#xff09;走廊中 第二幕、第一场&#xff09;公司前台第二场&#xff09;公司卫生间 第三幕、第一场&#xff09;一场异常面试 第四幕 、第一场&#xff09;大厦楼下门口第二场&#xff09;…

实验5 VLAN基础配置

实验5 VLAN基础配置 一、 原理描述二、 实验目的三、 实验内容四、 实验配置五、 实验步骤1.配置IP地址2.检测链路连通性3.创建 VLAN4.配置Access接口5.检验结果6.配置Trunk端口7.检验连通性 一、 原理描述 现代局域网通常配置为等级结构&#xff0c;一个工作组中的主机通过交…

【vue/uniapp】使用 smooth-signature 实现 h5 的横屏电子签名

通过github链接进行下载&#xff0c;然后代码参考如下&#xff0c;功能包含了清空、判断签名内容是否为空、生成png/jpg图片等。 签名效果&#xff1a; 预览效果&#xff1a; 下载 smooth-signature 链接&#xff1a;https://github.com/linjc/smooth-signature 代码参考&a…

流程图步骤条

1.结构 <ul class"stepUl"> <li class"stepLi" v-for"(item, index) in stepList" :key"index"> <div class"top"> <p :class"{active: currentState > item.key}">{{ item.value }}…

ROS机器人未知环境自主探索功能包explore_lite最全源码详细解析(五)

本系列文章主要针对ROS机器人常使用的未知环境自主探索功能包explore_lite展开全源码的详细解析&#xff0c;并进行概括总结。 本系列文章共包含六篇文章&#xff0c;前五篇文章主要介绍explore_lite功能包中 explore.cpp、costmap_tools.h、frontier_search.cpp、costmap_clie…

Canal--->准备MySql主数据库---->安装canal

一、安装主数据库 1.在服务器新建文件夹 mysql/data&#xff0c;新建文件 mysql/conf.d/my.cnf 其中my.cnf 内容如下 [mysqld] log_timestampsSYSTEM default-time-zone8:00 server-id1 log-binmysql-bin binlog-do-db mall # 要监听的库 binlog_formatROW2.启动数据库 do…

汽车4S行业的信息化特点与BI建设挑战

汽车行业也是一个非常大的行业&#xff0c;上下游非常广&#xff0c;像主机厂&#xff0c;上游的零配件&#xff0c;下游的汽车流通&#xff0c;汽车流通之后的汽车后市场&#xff0c;整个链条比较长。今天主要讲的是汽车流通&#xff0c;汽车4S集团。一个汽车4S集团下面授权代…

【CSS】利用Vue实现数字翻滚动画效果

利用Vue实现数字翻滚动画效果 在很多数据可视化的需求中&#xff0c;动态呈现数据变化是一个常见且具有较强视觉冲击力的手段&#xff0c;尤其是数字的实时变化。今天我们将探讨如何使用 Vue.js 和 CSS3 来实现数字的翻滚动画效果&#xff0c;即模拟真实物体在Z轴上翻动的效果…