文心一言 VS 讯飞星火 VS chatgpt (67)-- 算法导论6.5 6题

文心一言 VS 讯飞星火 VS chatgpt (67)-- 算法导论6.5 6题

六、在 HEAP-INCREASE-KEY 的第 5 行的交换操作中,一般需要通过三次赋值来完成。想一想如何利用INSERTION-SORT 内循环部分的思想,只用一次赋值就完成这一交换操作?

文心一言:

在 HEAP-INCREASE-KEY 的第 5 行交换操作中,我们可以通过利用 INSERTION-SORT 内循环部分的思想来进行优化,从而只用一次赋值完成这一交换操作。

通常,在 HEAP-INCREASE-KEY 的第 5 行交换操作中,我们需要通过三次赋值来交换 key 和 y 的值。第一次赋值将 key 的值赋给临时变量 temp,第二次赋值将 temp 的值赋给 y,第三次赋值将 y 的值赋给 key。

然而,我们可以利用 INSERTION-SORT 内循环部分的思想,通过一次赋值就完成这一交换操作。具体步骤如下:

1.将 key 的值赋给一个临时变量 temp。

2.将 y 的值赋给 key。

3.将 temp 的值赋给 y。

通过以上步骤,我们只需要进行一次赋值操作就可以完成 key 和 y 的值的交换,从而优化了交换操作的效率。

在这里插入图片描述

讯飞星火:

在 HEAP-INCREASE-KEY 的第 5 行的交换操作中,一般需要通过三次赋值来完成。想一想如何利用INSERTION-SORT内循环部分的思想,只用一次赋值就完成这一交换操作?

答:伪代码如下:

while i > 1 and A[PARENT(i)] < key
    A[i] = A[PARENT(i)]
    i = PARENT(i)
end while
A[i] = key

在这里插入图片描述

360智脑:

在 INSERTION-SORT 中,每次迭代都会将当前位置的元素插入到有序序列的正确位置上。因此,可以利用这个性质来减少交换次数。具体来说,在第五行开始时,先将第五行的第一个元素与第六行的第一个元素进行比较,如果前者比后者小,则将它们的位置互换;否则保持不动。这样就完成了一次比较和交换操作。接下来,再将第五行的第二个元素与第六行的第二个元素进行比较…以此类推,直到第五行的最后一个元素与第六行的最后一个元素进行比较并交换位置。这样一来,就不需要进行额外的赋值操作了。

在这里插入图片描述

chatglm:

在 HEAP-INCREASE-KEY 的第 5 行中,我们需要将堆顶元素 (即最大值) 与最后一个元素交换位置。通常情况下,我们需要通过三次赋值来完成这个交换操作:

  1. 将堆顶元素存储在一个临时变量中。
  2. 将最后一个元素赋值给堆顶元素。
  3. 将临时变量中的元素赋值给最后一个元素。
    然而,我们可以利用 INSERTION-SORT 内循环部分的思想,只用一次赋值就完成这个交换操作。具体做法如下:
  4. 从堆顶开始,依次向下遍历堆,将每个元素与它的子节点进行比较,如果子节点比它大,则交换它们。
  5. 在遍历过程中,我们发现最大值一定在堆的末尾,因此我们可以直接将堆顶元素与最后一个元素进行交换,只需要一次赋值操作。
    以下是对应的 Python 代码实现:
def heap_increase_key(heap, key):  
   # 假设当前元素为 i,其子节点为 2*i 和 2*i+1  
   left = 2*i  
   right = 2*i + 1  
   largest = i  
     
   # 依次向下遍历堆,将每个元素与它的子节点进行比较,如果子节点比它大,则交换它们  
   for j in range(left, right):  
       if heap[j] > heap[largest]:  
           largest = j  
     
   # 将堆顶元素与最后一个元素进行交换  
   heap[i], heap[largest] = heap[largest], heap[i]  
     
   # 对子节点进行调整,使它们满足堆性质  
   adjust_child(heap, largest)  
     
def adjust_child(heap, i):  
   # 假设当前元素为 i,它的子节点为 2*i 和 2*i+1  
   left = 2*i  
   right = 2*i + 1  
     
   # 如果左子节点小于右子节点,则交换它们  
   if left < right:  
       heap[i], heap[left] = heap[left], heap[i]  
     
   # 如果左子节点大于右子节点,则不需要交换  
   else:  
       heap[i], heap[right] = heap[right], heap[i]  
     
   # 如果左子节点大于等于右子节点,则不需要交换  
   else:  
       pass  

在这个实现中,我们利用了 INSERTION-SORT 内循环部分的思想,只用一次赋值就完成了交换操作。同时,我们还对子节点进行了调整,使它们满足堆性质。

在这里插入图片描述

在这里插入图片描述

通义千问:

可以利用INSERTION-SORT 中内层循环的思想,在每次迭代中将要交换的两个元素进行比较,如果前一个元素大于后一个元素,则交换它们的位置,然后将指针后移一位。这样在最后一次迭代时,最大的元素就会被置于正确的位置上。具体实现可以参考下面的代码:

void heapIncreaseKey(int* nums, int n, int key) {
    // base case: n == 0
    if (n == 0) return;

    // key is the smallest element in the heap
    int i = 0;
    int newHeapSize = n;
    int largest = nums[0];

    // perform insertion sort on the remaining elements
    for (int j = 1; j < n; j++) {
        int temp = nums[j];
        int compare = key - nums[j];

        // exchange the element with the largest value
        while (compare > 0 && i < newHeapSize) {
            int temp2 = nums[i];
            nums[i] = nums[j];
            nums[j] = temp2;

            // update the size of the heap
            newHeapSize--;
            if (i < newHeapSize) {
                int parent = (i - 1) / 2;
                nums[parent] = nums[i];
            }

            // move the largest element to its correct position
            compare = nums[i] - key;
            i++;
        }
    }

    // update the size of the heap
    n = newHeapSize;

    // exchange the largest element with the root
    nums[0] = nums[n-1];
    nums[n-1] = key;

    // heapify the heap
    heapify(nums, n);
}

在这里插入图片描述

在这里插入图片描述

天工:

在 HEAP-INCREASE-KEY 的第 5 行的交换操作中,一般需要通过三次赋值来完成,因为需要将两个节点的关键字互换,同时需要将它们的父节点和子节点的指针进行相应的调整,以保持树的结构不变。

如果想要只一次赋值就完成这一交换操作,可以利用INSERTION-SORT 内循环部分的思想。具体来说,我们可以将节点插入到已排序的序列中,并且在插入的同时进行交换操作。这样,就可以避免在交换节点的关键字时需要进行多次赋值的问题。

下面是一个示例代码,展示了如何使用INSERTION-SORT的思想来实现一次赋值的交换操作:

def heap_increase_key(heap):
    # 找到要插入的节点
    x = heap[0]
    y = heap[1]
    # 将节点x插入到已排序的序列中
    i = heap.index(x)
    while i > 0 and heap[i] < x:
        heap[i+1] = heap[i]
        i = i - 1
    heap[i+1] = x
    # 将节点y插入到已排序的序列中
    j = heap.index(y)
    while j > 0 and heap[j] < y:
        heap[j+1] = heap[j]
        j = j - 1
    heap[j+1] = y
    # 更新父节点和子节点的指针
    x = heap[1]
    y = heap[0]
    if y < x:
        heap[0], heap[parent[x]] = heap[parent[x]], heap[0]
    elif y > x:
        heap[0], heap[parent[y]] = heap[parent[y]], heap[0]
    if x < y:
        heap[1], heap[parent[y]] = heap[parent[y]], heap[1]
    elif x > y:
        heap[1], heap[parent[x]] = heap[parent[x]], heap[1]
    # 更新父节点的父节点和子节点的指针
    parent[x] = parent[x] - 1 if parent[x] != 0 else 0
    
    parent[y] = parent[y] - 1 if parent[y] != 0 else 0

在这个示例代码中,我们首先找到要插入的节点x和y,然后将它们插入到已排序的序列中。在插入节点时,我们只需要将节点插入到它应该在的位置,并且更新父节点和子节点的指针即可。最后,我们需要更新父节点的父节点和子节点的指针,以保持树的结构不变。

通过这种方法,我们可以在一次赋值的交换操作中完成HEAP-INSERTION-SORT算法的操作,从而提高算法的效率。

在这里插入图片描述

在这里插入图片描述

chatgpt:

对于堆数据结构的 HEAP-INCREASE-KEY 操作,在第5行进行交换操作时,通常需要三次赋值来完成:

5 交换 A[i] 和 A[PARENT(i)]
   temp = A[i]
   A[i] = A[PARENT(i)]
   A[PARENT(i)] = temp

但是可以利用插入排序(INSERTION-SORT)内循环部分的思想,只使用一次赋值来完成这一交换操作。通过以下步骤可以实现:

1.将要交换的两个元素存储在临时变量 temp 和 i 中。

2.将较小的元素赋值给 A[i]。

3.然后通过逐步移动元素的方式,将较大的元素逐个往后挪一个位置。

4.最后将临时变量 temp 的值赋给应该置换的最后一个位置。

以下是使用这种方法进行交换的示例:

5 交换 A[i] 和 A[PARENT(i)]
   temp = A[i]
   A[i] = A[PARENT(i)]

   j = i
   while j > 0 and A[j] > temp:
       A[j] = A[j - 1]
       j = j - 1

   A[j] = temp

通过这种方式,我们只需要一次赋值操作就能完成交换操作,同时保持堆的性质。

在这里插入图片描述

总结

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/53295.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Django+Vue】英文成绩管理平台--20230727

能够满足大部分核心需求&#xff08;标绿&#xff09;&#xff1a;报表部分应该比较难。 项目地址 前端编译 https://gitlab.com/m7840/toeic_vue_dist Vue源码 https://gitlab.com/m7840/toeic_vue Django源码 https://gitlab.com/m7840/toeic_python 项目架构 流程 …

嵌入式面试常见题目收藏(超总结)

​ 这篇文章来自很多博客主和其他网站的作者&#xff0c;如有侵权&#xff0c;联系必删 文章出处标注&#xff1a; https://blog.csdn.net/qq_44330858/article/details/128947083 ***如需PDF或者原稿可私信 *** ***如需PDF或者原稿可私信 *** ***如需PDF或者原稿可私信 *** 1.…

16位S912ZVML32F3MKH、S912ZVML31F1WKF、S912ZVML31F1MKH混合信号MCU,适用于汽车和工业电机控制应用。

S12 MagniV微控制器是易于使用且高度集成的混合信号MCU&#xff0c;非常适合用于汽车和工业应用。S12 MagniV MCU提供单芯片解决方案&#xff0c;是基于成熟的S12技术的完整系统级封装 (SiP) 解决方案&#xff0c;在整个产品组合内软件和工具都兼容。 S12 MagniV系统级封装 (S…

EP4CE6E22C8N Error: Can‘t recognize silicon ID for device 1

经过各种排查&#xff0c;发现是AS配置不对&#xff0c;仅供参考 工程 参考某处的工程画板配置的FPGA板子&#xff0c;用于学习入门FPGA。 烧录sof文件是正常的&#xff0c;并能正常运行。 但是烧录jic是failed&#xff0c;查看报错为&#xff1a;Error: Can’t recognize si…

【Maven】让maven更高效,优化maven构建项目速度

打开idea的setting&#xff0c;找到maven&#xff0c;设置它多线程数&#xff0c;重启后即可&#xff01; 我这里是8&#xff0c;你们可以随便设置。 如下图&#xff1a;

【高级数据结构】树状数组

目录 树状数组1 &#xff08;单点修改&#xff0c;区间查询&#xff09; 树状数组1 &#xff08;单点修改&#xff0c;区间查询&#xff09; 洛谷&#xff1a;树状数组1https://www.luogu.com.cn/problem/P3374 题目描述 如题&#xff0c;已知一个数列&#xff0c;你需要进行…

Vulnhub: shenron: 3靶机

kali&#xff1a;192.168.111.111 靶机&#xff1a;192.168.111.171 信息收集 端口扫描 nmap -A -sC -v -sV -T5 -p- --scripthttp-enum 192.168.111.171 修改hosts后访问目标80端口&#xff0c;发现是wordpress wpscan收集目标用户&#xff0c;爆破出密码&#xff1a;ilov…

前后端分离开发流程

1、介绍 在前后端分离开发中&#xff0c;前端负责用户界面和交互逻辑的实现&#xff0c;后端则处理业务逻辑和数据持久化。这种开发模式的优势在于前后端可以独立进行开发&#xff0c;提高了开发效率&#xff0c;并且使得前后端可以采用不同的技术栈来实现各自的功能。 2、开…

LabVIEW FPGA开发实时滑动摩擦系统

LabVIEW FPGA开发实时滑动摩擦系统 由于非线性摩擦效应的建模和补偿的固有困难&#xff0c;摩擦系统的运动控制已被广泛研究。最近&#xff0c;人们更加关注滑动动力学和滑动定位&#xff0c;作为传统机器人定位的低成本和更灵活的驱动替代方案。摩擦控制器设计和适当选择基础…

NodeJs后端项目使用docker打包部署

docker安装看之前的文章 默认已经安装好docker并且配置没有问题 拉取项目 https://gitee.com/coder-msc/docker-node 本地跑一个看看 pnpm install pnpm start 本地访问 http://localhost:1301/getname?name%E5%93%88%E5%88%A9%E6%B3%A2%E7%89%B9项目整个上传服务器 查看…

【Spring】Spring之循环依赖底层源码解析

什么是循环依赖 A依赖了B&#xff0c;B依赖了A。 示例&#xff1a; // A依赖了B class A{public B b; }// B依赖了A class B{public A a; }其实&#xff0c;循环依赖并不是问题&#xff0c;因为对象之间相互依赖是很正常的事情。示例&#xff1a; A a new A(); B b new B…

如何快速用PHP取短信验证码

要用PHP获取短信验证码&#xff0c;通常需要连接到一个短信服务提供商的API&#xff0c;并通过该API发送请求来获取验证码。由于不同的短信服务提供商可能具有不同的API和授权方式&#xff0c;我将以一个简单的示例介绍如何使用Go语言来获取短信验证码。 在这个示例中&#xff…

信驰达推出RTL8720DN系列2.4G和5G双频Wi-Fi+蓝牙二合一模块

近日&#xff0c;领先的无线物联网通信模块厂商深圳信驰达科技RF-star推出了基于RTL8720DN SoC的2.4 GHz和5 GHz双频Wi-Fi蓝牙二合一模块—RF-WM-20DNB1。 图 1信驰达RF-WM-20DNB1 Wi-Fi模块 RF-WM-20DNB1是一款低功耗单芯片无线蓝牙和Wi-Fi组合模块&#xff0c;支持双频(2.4 G…

php://filter绕过死亡exit

文章目录 php://filter绕过死亡exit前言[EIS 2019]EzPOP绕过exit 参考 php://filter绕过死亡exit 前言 最近写了一道反序列化的题&#xff0c;其中有一个需要通过php://filter去绕过死亡exit()的小trick&#xff0c;这里通过一道题目来讲解 [EIS 2019]EzPOP 题目源码&#…

IO进程线程第三天(7.31)time,localtime,文件io函数:open,umask,close,write,read,lseek,stat,

用read函数完成图片文件拷贝 #include<stdio.h> #include<head.h> int main(int argc, const char *argv[]) {//umask(0);//将文件权限掩码改为0&#xff0c;使得其他用户可写int fd open("/home/ubuntu/图片/2.jpg",O_RDONLY,0777);//打开图片if(fd&l…

Neo4j 集群和负载均衡

Neo4j 集群和负载均衡 Neo4j是当前最流行的开源图DB。刚好读到了Neo4j的集群和负载均衡策略&#xff0c;记录一下。 1 集群 Neo4j 集群使用主从复制实现高可用性和水平读扩展。 1.1 复制 集群的写入都通过主节点协调完成的&#xff0c;数据先写入主机&#xff0c;再同步到…

【Uniapp】支付链转二维码

前言 提示&#xff1a;这个是一个很小的项目&#xff0c;大概30分钟就能搞定 实现方式&#xff1a;输入支付代码&#xff0c;存储到对应的数据库表中&#xff0c;二维码访问一个PHP文件通过id来进行重定向&#xff0c;这样就可以使每张二维码都是固定的&#xff0c;替换二维码…

blender 用蒙版添加材质

一、添加材质常规方法 选择物体新建材质&#xff0c;shift a 新建图像纹理&#xff0c;此时会发现添加上的纹理会有接缝&#xff0c;shift a 新建映射 纹理坐标&#xff0c;纹理坐标选择生成&#xff0c;此时&#xff0c;之前的接缝便会消失&#xff1b; 如何快捷添加纹理坐…

13个ChatGPT类实用AI工具汇总

在ChatGPT爆火后&#xff0c;各种工具如同雨后春笋一般层出不穷。以下汇总了13种ChatGPT类实用工具&#xff0c;可以帮助学习、教学和科研。 01 / ChatGPT for google/ 一个浏览器插件&#xff0c;可搭配现有的搜索引擎来使用 最大化搜索效率&#xff0c;对搜索体验的提升相…

Tomcat 安装配置教程及成功后,启动失败报错解决方案

解决方案 我的报错原因是因为我的JDK是1.8的而我的Tomcat是10版本的&#xff0c;可能是因为版本原因吧&#xff0c;我重新装了Tomcat 9就可以启动成功了&#xff01; 简单说下安装的时候需要注意哪些步骤吧 今天我在安装tomcat10的时候&#xff0c;安装成功后&#xff0c;启…