算法学习——LeetCode力扣动态规划篇3(494. 目标和、474. 一和零、518. 零钱兑换 II)

算法学习——LeetCode力扣动态规划篇3

在这里插入图片描述

494. 目标和

494. 目标和 - 力扣(LeetCode)

描述

给你一个非负整数数组 nums 和一个整数 target 。

向数组中的每个整数前添加 ‘+’ 或 ‘-’ ,然后串联起所有整数,可以构造一个 表达式 :

例如,nums = [2, 1] ,可以在 2 之前添加 ‘+’ ,在 1 之前添加 ‘-’ ,然后串联起来得到表达式 “+2-1” 。
返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

示例

示例 1:

输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3

示例 2:

输入:nums = [1], target = 1
输出:1

提示

1 <= nums.length <= 20
0 <= nums[i] <= 1000
0 <= sum(nums[i]) <= 1000
-1000 <= target <= 1000

代码解析

这道题根本还是回到了在数组中找到一个集合,使得该集合与其余部分之差为target,通过公式推导:
我们可以知道 该集合的值为:(sum-target)/2;

回溯法

目的是找到和为**(sum-target)/2** 的种类

class Solution {
public:
    int result = 0;
    void backtracking(vector<int>& nums, int target ,int deep ,int sum)
    {
        if(sum > target)return;
        if(sum == target)result++;
        if(deep == nums.size()) return;
        //从任一点开始
        for(int i= deep ; i < nums.size() ;i++)
        {
            backtracking(nums,target , i+1  , sum + nums[i]);
        }
        return;
    }
    int findTargetSumWays(vector<int>& nums, int target) {
       
        int sum = 0 , diff = 0;
        for(auto it:nums) sum += it;
        diff = sum - target;
        if( diff<0 || diff%2==1 ) return 0;
		//回溯找diff/2
        backtracking(nums,diff/2,0 ,0);
        return result;
    }
};

动态规划
  1. 背包定义: dp[i][j] , i是使用0-i的元素,j是背包容量,dp[i][j]是使用这么多个元素恰好凑成j的情况
  2. 初始化:dp[0][0]为1,装满容量为0的背包,有一种方法。dp[0][j],看第一个元素的大小情况,进行赋值1(如果第一个元素为0.则dp[0][0]应该为2),其他层的根据第一层改变.
  3. 遍历顺序:从上往下
  4. 递推公式: dp[i][j]=dp[i-1][j](不需要num[i]就能够凑出j的情况)+dp[i-1][j-nums[i]];(需要num[i]凑出j空间的情况) 最终就能实现,从0-i元素当中组合,得到target的所有情况。
class Solution {
public:
    int findTargetSumWays(vector<int>& nums, int target) {
       
        int sum = 0 , diff = 0;
        for(auto it:nums) sum += it;
        diff = sum - target;
        if( diff<0 || diff%2==1 ) return 0;
        vector<vector<int>>  dp( nums.size() , vector<int>(diff/2 + 1 , 0) ) ;

        dp[0][0] = 1;
        for(int j=0 ; j<(diff)/2+1 ; j++)
            if(j==nums[0]) dp[0][j] += 1;


        for(int i=1 ; i<nums.size() ;i++)
        {
            for(int j=0 ; j<(diff)/2+1 ; j++)
            {
                if(j>=nums[i])
                    dp[i][j] = dp[i-1][j] + dp[i-1][ j - nums[i]] ;
                else
                    dp[i][j] = dp[i-1][j];
            }
        }      
        return dp[nums.size()-1][(diff)/2];
    }
};

474. 一和零

474. 一和零 - 力扣(LeetCode)

描述

给你一个二进制字符串数组 strs 和两个整数 m 和 n 。

请你找出并返回 strs 的最大子集的长度,该子集中 最多 有 m 个 0 和 n 个 1 。

如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。

示例

示例 1:

输入:strs = [“10”, “0001”, “111001”, “1”, “0”], m = 5, n = 3
输出:4
解释:最多有 5 个 0 和 3 个 1 的最大子集是 {“10”,“0001”,“1”,“0”} ,因此答案是 4 。
其他满足题意但较小的子集包括 {“0001”,“1”} 和 {“10”,“1”,“0”} 。{“111001”} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。

示例 2:

输入:strs = [“10”, “0”, “1”], m = 1, n = 1
输出:2
解释:最大的子集是 {“0”, “1”} ,所以答案是 2 。

提示

1 <= strs.length <= 600
1 <= strs[i].length <= 100
strs[i] 仅由 ‘0’ 和 ‘1’ 组成
1 <= m, n <= 100

代码解析

动态规划(01背包,三级数组)

和经典的背包问题只有一种容量不同,这道题有两种容量,即选取的字符串子集中的 0 和 1 的数量上限。

经典的背包问题可以使用二维动态规划求解,两个维度分别是物品和容量。这道题有两种容量,因此需要使用三维动态规划求解,三个维度分别是字符串、0的容量和 1 的容量。

定义三维数组dp,其中dp[i][j][k] 表示在前 i 个字符串中,使用 j 个 0 和 k 个 1 的情况下最多可以得到的字符串数量。
当 0 和 1 的容量分别是 j 和 k 时,考虑以下两种情况:

  • 如果 j< zeros 或 k<ones,则不能选第 i 个字符串,此时有 dp[i][j][k] = dp[i−1][j][k];

  • 如果 j ≥ zeros 且 k ≥ones,则如果不选第 i个字符串,有dp[i][j][k]=dp[i−1][j][k],如果选第 i个字符串,有 dp[i][j][k]=dp[i−1][j−zeros][k−ones]+1,dp[i][j][k] 的值应取上面两项中的最大值。

因此状态转移方程如下:
在这里插入图片描述

class Solution {
public:
    int find_0(string s1)
    {
        int num = 0;
        for(auto it:s1) if(it == '0') num++;
        return num;
    }

    int findMaxForm(vector<string>& strs, int m, int n) {

        vector<vector<vector<int>>>  dp( strs.size() ,vector<vector<int>>( m+1 ,vector<int>( n+1,0) ));
        int num_0 = 0,num_1 = 0;
        num_0 = find_0(strs[0]);
        num_1 = strs[0].size() - num_0;
        for(int j=0 ; j<= m ;j++)
        {
            for(int k=0 ; k<= n ;k++)
            {
               
                if( j>= num_0 && k>= num_1)
                    dp[0][j][k] = 1;
            }
           
        }

        
        for(int i=1 ; i<strs.size() ; i++)
        {
            num_0 = find_0(strs[i]);
            num_1 = strs[i].size() - num_0;
            for(int j=0 ; j<=m ;j++)
            { 
                for(int k=0 ; k<=n ;k++)
                {
                    
                     if( j>= num_0 && k>= num_1)
                        dp[i][j][k] = max( dp[i-1][j][k], dp[i-1][j - num_0][k - num_1] + 1);
                     else
                        dp[i][j][k] = dp[i-1][j][k];
                }
            }
        }
        
        int max_num = 0;
        for(int i=0 ; i<strs.size() ; i++)
        {
            if(dp[i][m][n] > max_num) max_num = dp[i][m][n];
            // cout<<dp[i][m][n]<<' ';
        }
            
        return max_num ;
    }
};

动态规划(滑动数组,二级数组)

由于dp[i][][] 的每个元素值的计算只和dp[i−1][][] 的元素值有关,因此可以使用滚动数组的方式,去掉 dp 的第一个维度,将空间复杂度优化到 O(mn)O(mn)。

实现时,内层循环需采用倒序遍历的方式,这种方式保证转移来的是 dp[i−1][][] 中的元素值。

class Solution {
public:
    int find_0(string s1)
    {
        int num = 0;
        for(auto it:s1) if(it == '0') num++;
        return num;
    }

    int findMaxForm(vector<string>& strs, int m, int n) {

        vector<vector<int>>  dp( m+1 ,vector<int>(n+1,0));

        int num_0 = 0,num_1 = 0;
        for(int i=0 ; i<strs.size() ; i++)
        {
            num_0 = find_0(strs[i]);
            num_1 = strs[i].size() - num_0;
            for(int j=m ; j>=num_0;j--)
            { 
                for(int k=n ; k>=num_1 ;k--)
                {
                    dp[j][k] = max( dp[j][k], dp[j - num_0][k - num_1] + 1);
                }
            }
        }
        return dp[m][n] ;
    }
};

518. 零钱兑换 II

518. 零钱兑换 II - 力扣(LeetCode)

描述

给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。

请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。

假设每一种面额的硬币有无限个。

题目数据保证结果符合 32 位带符号整数。

示例

示例 1:

输入:amount = 5, coins = [1, 2, 5]
输出:4
解释:有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1

示例 2:

输入:amount = 3, coins = [2]
输出:0
解释:只用面额 2 的硬币不能凑成总金额 3 。

示例 3:

输入:amount = 10, coins = [10]
输出:1

提示

1 <= coins.length <= 300
1 <= coins[i] <= 5000
coins 中的所有值 互不相同
0 <= amount <= 5000

代码解析

完全背包

一看到钱币数量不限,就知道这是一个完全背包。
dp[j]:凑成总金额j的货币组合数为dp[j]

dp[j] (考虑coins[i]的组合总和) 就是所有的dp[j - coins[i]](不考虑coins[i])相加。
所以递推公式:dp[j] += dp[j - coins[i]];

首先dp[0]一定要为1,dp[0] = 1是 递归公式的基础。
从dp[i]的含义上来讲就是,凑成总金额0的货币组合数为1。

class Solution {
public:
    int change(int amount, vector<int>& coins) {
        vector<int> dp( amount+1 , 0 );

        dp[0] = 1 ;
        for(int i=0 ; i < coins.size() ; i++)
        {
            for(int j=0 ; j<=amount ; j++  )
            {
                if( j>=coins[i] )
                    dp[j] +=  dp[j-coins[i]] ;
                else
                    dp[j] = dp[j];
            }
        }
        return dp[amount];
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/507249.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

sk-learn 特征数据预处理方式汇总

数据集及基本操作 1&#xff09;数据集的组成 数据集由特征(feature)与标签(label)构成。 特征是输入数据。 什么是特征&#xff08;Features&#xff09;: 机器学习中输入数据&#xff0c;被称为特征。通常特征不止1个&#xff0c;可以用 n 维向量表示n个特征。 Features 数…

智能仪器替代技术工程师重复工作 专注生产方案优化!

关键词&#xff1a;智能仪器,测径仪,测宽仪,测厚仪,直线度测量仪 在当今竞争激烈的市场环境下&#xff0c;企业需要不断提高生产效率和质量&#xff0c;以满足客户的需求。而技术工程师在生产过程中扮演着至关重要的角色&#xff0c;但他们的时间和精力往往被重复的工作所占据&…

【爬虫框架Scrapy】02 Scrapy入门案例

接下来介绍一个简单的项目&#xff0c;完成一遍 Scrapy 抓取流程。通过这个过程&#xff0c;我们可以对 Scrapy 的基本用法和原理有大体了解。 1. 本节目标 本节要完成的任务如下。 创建一个 Scrapy 项目。 创建一个 Spider 来抓取站点和处理数据。 通过命令行将抓取的内容…

Stable Diffusion WebUI 附加功能/图片放大(Extras):单张图片/批量处理/从目录进行批量处理

本文收录于《AI绘画从入门到精通》专栏&#xff0c;专栏总目录&#xff1a;点这里&#xff0c;订阅后可阅读专栏内所有文章。 大家好&#xff0c;我是水滴~~ 篇文章主要讲解 Stable Diffusion WebUI 的附加功能/图片放大&#xff08;Extras&#xff09;的使用&#xff0c;主要…

IP归属地在互联网行业中的应用

摘要&#xff1a;IP&#xff08;Internet Protocol&#xff09;地址归属地是指互联网上某个IP地址所对应的地理位置信息。在互联网行业中&#xff0c;IP归属地具有重要的应用价值&#xff0c;包括网络安全、广告定向、用户定位等方面。IP数据云将探讨IP归属地在互联网行业中的应…

RUST使用crates.io上的依赖完整教程

1.打开crates.io 2.搜索要使用的依赖,如rand 点击包名,进入包详情页面: 添加依赖方法有两种 1.使用cargo命令 2.直接修改Cargo.toml 使用cargo命令操作如下: 在工程目录执行如下命令: cargo add rand 执行完成后如自动向Cargo.toml中添加依赖如下: 手动修改Cargo.toml是…

社交媒体:12种打造吸引力社交媒体内容的方法

社交媒体在当代社会中扮演着重要的角色&#xff0c;越来越多的人利用社交媒体与朋友、家人和同事保持联系。为了在这个竞争激烈的环境中脱颖而出&#xff0c;我们需要学会如何创建吸引人的内容。本文将介绍12种方法&#xff0c;帮助您在社交媒体上打造引人注目的内容。 1. 挑选…

2024资源环境、材料科学与可持续发展国际会议(RESMSSD2024)

2024资源环境、材料科学与可持续发展国际会议(RESMSSD2024) 会议简介 随着人类对地球资源的不断开发和环境问题的日益严重&#xff0c;资源环境、材料科学与可持续发展成为了全球关注的焦点。为了进一步推动相关领域的发展和创新&#xff0c;2024资源环境、材料科学与可持续发…

Electron的学习

目录 项目初始化可以看官网非常详细根路径创建.vscode文件夹主进程和渲染进程之前的通信ipcRenderer.send和ipcMain.on的使用ipcRenderer.invoke和ipcMain.handle的使用 切换主题模式文件拖放保存消息通知进度展示图标闪烁自定义菜单自定义右键菜单 项目初始化可以看官网非常详…

简单的登录页面

简单的登录页面 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>Title</title><style>* {margin: 0;padding: 0;}html {height: 100%;}body {height: 100%;}.container {height: 100%;ba…

jspm智能仓储系统

摘 要 随着科学技术的飞速发展&#xff0c;社会的方方面面、各行各业都在努力与现代的先进技术接轨&#xff0c;通过科技手段来提高自身的优势&#xff0c;智能仓储系统当然也不能排除在外。智能仓储系统是以实际运用为开发背景&#xff0c;运用软件工程开发方法&#xff0c;采…

jenkins进行自动化部署

jenkins自动化部署 hello&#xff0c;大家好&#xff0c;前文我们已经下载好我们的jenkins了&#xff0c;下面我们用jenkins来实现自动化部署啦&#xff01; 一、下载插件 我们选择插件管理 一个是Maven Integration plugin&#xff0c;一个是 Publish Over SSH 这里因为作…

让工作自动化起来!无所不能的Python

让工作自动化起来&#xff01;无所不能的Python 一、Python是办公自动化的重要工具二、Python是提升职场竞争力的利器三、Python是企业数字化的重要平台四、Python是AI发展的重要通道之一内容简介作者简介前言读者对象如何阅读本书购买链接参与方式 随着我国企业数字化和信息化…

DC-9靶场

一.环境搭建 1.下载地址 靶机下载地址&#xff1a;https://download.vulnhub.com/dc/DC-9.zip 2.虚拟机配置 设置虚拟机为nat&#xff0c;遇到错误点重试和是 开启虚拟机如下图所示 二.开始渗透 1. 信息收集 查找靶机的ip地址 arp-scan -l 发现靶机的ip地址为192.168.11…

● 435. 无重叠区间 ● 763.划分字母区间 ● 56. 合并区间

● 435. 无重叠区间 class Solution:def eraseOverlapIntervals(self, intervals: List[List[int]]) -> int:if len(intervals)1:return 0intervalssorted(intervals,keylambda x:(x[0],x[1]))res0for i in range(1,len(intervals)):if intervals[i][0]<intervals[i-1][…

KUKA机器人更改时间和HMI最小化设置

在使用 KUKA 机器人时&#xff0c;示教器上左边有个“表”的图标&#xff0c;点一下就会显示时间。但一般不准&#xff0c;想要更改时间可以通过HMI最小化后进行更改设置。更改时间需要将示教器界面最小化&#xff0c;也就是进入Windows 界面。通过以下步骤可以进行设置&#x…

自定义口令加入群聊怎么弄?用词令关键词直达口令加入微信群延长群二维码7天有效方法

微信口令加入群聊有二种方式 一、微信面对面建群 微信面对面建群的方式适合现实中的朋友之间相互认识且想要建立群聊的场景。微信面对面建群口令加入群聊的有效距离是在几十米范围内&#xff0c;因此只能是附近几十米范围内的人&#xff0c;正确输入微信面对面建群口令后才可…

Linux---多线程(下)

前情提要&#xff1a;Linux---多线程(上) 七、互斥 临界资源&#xff1a;多线程执行流共享的资源就叫做临界资源临界区&#xff1a;每个线程内部&#xff0c;访问临界资源的代码&#xff0c;就叫做临界区互斥&#xff1a;任何时刻&#xff0c;互斥保证有且只有一个执行流进入临…

雪王涨价?媒介盒子揭秘它的圈粉秘籍

最近蜜雪冰城又又又站上风口浪尖了&#xff0c;起因是有网友发现部门门店涨了一块钱。 随着舆论发酵越来越快&#xff0c;蜜雪冰城回应了问题&#xff0c;表示涨价属实&#xff0c;目前只在上海试行。 原本产品的涨价或降价都是经营常态&#xff0c;为什么蜜雪冰城的涨价能引起…

164.乐理基础-和声小调、旋律小调

内容参考于&#xff1a;三分钟音乐社 上一个内容&#xff1a;163.自然小调、音名为何从C开始 首先是小调式里的和声小调 和声小调就是在自然小调的基础上&#xff0c;把自然小调的第Ⅶ级音升高一个半音&#xff0c;它的内部规则是 全半全全半增二半 带上首调 和声小调只有一个…