sk-learn 特征数据预处理方式汇总

数据集及基本操作

1)数据集的组成

数据集由特征(feature)与标签(label)构成。

特征是输入数据。 什么是特征(Features): 机器学习中输入数据,被称为特征。通常特征不止1个,可以用 n 维向量表示n个特征。
Features 数据通常表示为大写 X,数据格式为 Numpy array 或者 Pandas 的 dataFrame
X的数据类型必须是float32,或 float64.

标签是输出数据,在sklearn 中有时也称为target, response.
通常标记为小写 y, 只能是1维向量,数据格式为 Numpy array 或者 Pandas 的 Series

2)常用测试集:

  • iris 鸢尾花数据集
  • digits 手写体分类数据集
  • Boston house prices波士顿房价回归数据集

注意 Boston House Price数据集已从1.2中被移除,但仍有很多教程中还使用此数据集做回归示例。手工加载该数据集的方法如下:

import pandas as pd
    import numpy as np

    data_url = "http://lib.stat.cmu.edu/datasets/boston"
    raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
    data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
    target = raw_df.values[1::2, 2]

也可以从 http://lib.stat.cmu.edu/datasets/boston 复制保存至本地,从本地加载

raw_df = pd.read_csv("./boston", sep="\s+", skiprows=22, header=None)

官方提供了California housing datase替代

  from sklearn.datasets import fetch_california_housing
  housing = fetch_california_housing()  #可能下载不了。 

切分数据集

通常,需要将数据集切分为两部分: training set and testing set.

如:

from sklearn.datasets import load_iris
iris = load_iris()

data_X = iris.data
data_y = iris.target

from sklearn.model_selection import train_test_split

#划分为训练集和测试集数据
X_train, X_test, y_train, y_test = train_test_split(
    data_X, 
    data_y, 
    test_size=0.3,
    random_state=111
)

print(X_train.shape)
print(X_test.shape)

print(y_train.shape)
print(y_test.shape)

Output
(105, 4)
(45, 4)
(105,)
(45,)

数据集预处理技术

sklearn的数据预处理操作分类

(1) Feature Extract
① Load features from dict
② 文件特征化
(2) Preprocessing Data
① Standalizaiton , scaling
② Normalization
③ Encoding categorical features
④ Discretization
⑤ Custom transformers
(3) Imputation of missing values
① Univariate feature imputation, Multivariate feature imputation
② Nearest neighbors imputation
③ 用常量填充
④ NaN空值填充
(4) Dimension Reduction
① PCA: principal component analysis
② Random projections
③ Feature agglomeration
(5) 快速降维技术 Random Projection
① The Johnson-Lindenstrauss lemma
② Gaussian random projection
③ Sparse random projection

(1)Binarisation 二值 化

二值化主要用于将数值特征向量转换为(0,1), 或(true, false)

原始数据
import numpy as np
from sklearn import preprocessing
data = np.array([[3, -1.5, 2, -5.4],
[0, 4, -0.3, 2.1],
[1, 3.3, -1.9, -4.3]]) # 原始数据矩阵 shape=(3,4
二值化处理:
binarized=preprocessing.Binarizer(threshold=1.4).transform(data)
#小于等于1.4的为0,其余为1
print(“原始:\n”,data)
print(“二值化:\n”,binarized)
[
[ 1. 0. 1, 0.]
[ 0. 1. 0, 1]
[ 0. 1. 0. 0]
]

(2)标准化与归一化处理

数据集的标准化(Standardization)是一种特征缩放技术。其主要目的是调整特征的尺度,使得所有特征都具有相同的尺度或范围。

具体来说,标准化通常是通过将每个特征值减去其均值,然后除以其标准差来实现的。这样处理后,每个特征的均值为0,标准差为1,符合标准正态分布。标准化对于那些依赖于距离和权重的算法(如KNN、Logistic Regression等)来说尤其重要,因为这些算法不应受到不均匀缩放数据集的影响。

Normalizatioin,也称归一化。 但与标准化有区别的。归一化主要目的是将数据映射到特定的范围,通常是[0,1]或[-1,1]。标准化更适用于那些特征值分布接近正态分布的情况。而归一化则更适用于那些数据范围有限或需要限制输出范围的情况。

但很多文档中,也将Normalizaiton 归为标准化的方法中。

标准化方式:
Z-score标准化(标准差标准化):这是最常用的标准化方法之一。这种方法对于大多数基于梯度的优化算法(如神经网络和逻辑回归)非常有效,因为它可以确保每个特征在模型中具有相同的权重。
Scaling 缩放技术
Min-max标准化(最小-最大标准化):它通过缩放特征值,使其落在[0,1]的范围内。具体实现是将每个特征值减去其最小值,然后除以其最大值与最小值之差。这种方法适用于那些需要限制数据范围或输出范围的情况,例如某些图像处理和信号处理的任务。
MaxAbsScaler:原理:将每个特征值缩放到[-1, 1]区间,通过除以每个特征的最大绝对值实现。如果数据集中有很大的异常值,使用MaxAbsScaler可能是一个好选择,因为它不会受到异常值的影响。

A)StandardScaler 基本标准化方法

计算z score, 分布转为标准正态分布

示例:

import numpy as np  
from sklearn.preprocessing import StandardScaler  
 
# 假设的数据集  
data = np.array([[170, 60], [180, 70], [165, 55], [175, 65]])  
  
# 创建StandardScaler对象  
scaler = StandardScaler()  
  
# 对数据进行标准化处理  
standardized_data = scaler.fit_transform(data)    
print(standardized_data)

# 查看标准化之后的数据,均值为0, 标准差为1
>>> standardized_data.mean(axis=0)
array([0., 0., 0.,0.])
>>> standardized_data.std(axis=0)
array([1., 1., 1.])

B)Min-Max 缩放

也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 - 1], 或[-1,1]之间。

其使用方法与standardScalar()相似

scaler = MinMaxScaler()
# 假设的数据集  
data = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])  
# 对数据进行归一化处理  
normalized_data = scaler.fit_transform(data)  

输出数据的每个特征值都位于[0,1]区间内

如果你想要将数据缩放到不同的范围,例如[-1, 1],你可以在创建MinMaxScaler对象时指定feature_range参数:
scaler = MinMaxScaler(feature_range=(-1, 1))
normalized_data = scaler.fit_transform(data)

C)MaxAbsScaler缩放

原理:将每个特征值缩放到[-1, 1]区间,通过除以每个特征的最大绝对值实现。
示例:如果数据集中有很大的异常值,使用MaxAbsScaler可能是一个好选择,因为它不会受到异常值的影响。

from sklearn.preprocessing import MaxAbsScaler  
  
scaler = MaxAbsScaler()  
scaled_data = scaler.fit_transform(data)  
D)Mean Removal均值移除
data_standardized=preprocessing.scale(data)

均值移除之后的矩阵每一列的均值约为0,而std为1。这样做的目的是确保每一个特征列的数值都在类似的数据范围之间,防止某一个特征列数据天然的数值太大而一家独大。

E)归一化

就是归一化是将单个样本缩放到具有单位范数的过程
normalize函数提供了一个快速简便的方法,用于在单个类似数组的数据集上执行此操作, 范数可以使用l1, l2, max,

>>> X = [[ 1., -1.,  2.],
...      [ 2.,  0.,  0.],
...      [ 0.,  1., -1.]]
>>> X_normalized = preprocessing.normalize(X, norm='l2')

>>> X_normalized
array([[ 0.40..., -0.40...,  0.81...],
       [ 1.  ...,  0.  ...,  0.  ...],
       [ 0.  ...,  0.70..., -0.70...]])

L2 Normalisation
L2 normalization(也称为欧氏距离归一化)是一种常用的技术,它通过对特征向量进行缩放,使得每个样本的L2范数(即欧几里得范数)等于一个特定的值,通常是1。这有助于确保模型不会偏向于具有较大范数的特征,从而改进模型的表现。
在sklearn库中,Normalizer类提供了一个norm参数,可以设置为’l2’来执行L2 normalization。

Sklearn 也提供了1个Normlizer 类,可通过Normlizer.transform()方法进行归一化操作
Normalizer类提供了一个norm参数,可以设置为’l2’来执行L2 normalization。

normalizer = Normalizer(norm='l2')  
normalized_data = normalizer.transform(X)  

(3)缺失值处理–插值:

imp=SimpleImputer(missing_values=np.nan, strategy=’mean’)

impute.SimpleImputer进行缺失值处理,其中参数miss_values是告诉SimpleImputer,数据中缺失值长什么样,默认是np.nan;参数strategy是缺失值插补策略,有mean,median,most_frequent,constant插补,其中前两个均值和中位数只能在数值型中插补,后两个众数和特定值可以在数值型和字符型中都可以插补,特定值是在参数fill_value中输入的值,参数copy是否创建副本,默认True是创建,如果为False则会覆盖原数据

(4)处理异常数据 Outlier data

Outlier data, far bigger or less than rest data in dataset. 有几种方式可以处理
方式1: 用pandas处理
删除异常行

df = pd.DataFrame({  
    'feature1': [1, 2, 3, 4, 500],  # 假设500是异常值  
    'feature2': [10, 20, 30, 40, 50],  
    'target': [0, 0, 1, 1, 1]  
})    
# 删除包含异常值的行  
df = df[df['feature1'] < 100]  # 删除'feature1'大于100的行  
  
# 划分数据集  
X = df[['feature1', 'feature2']]  
y = df['target']  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  
  
# 用均值替代
import pandas as pd  
import numpy as np  
  
# 创建一个示例DataFrame  
data = {'A': [1, 2, 3, 4, 500], 'B': [5, 6, 7, 8, 9], 'C': [10, 11, 12, 1000, 14]}  
df = pd.DataFrame(data)  
  
# 计算每列的均值  
mean_values = df.mean()  
  
# 定义一个函数来替换异常值  
def replace_outliers_with_mean(series, threshold=1.5):  
    # 计算标准差  
    std_dev = series.std()  
    # 计算异常值的上下限  
    lower_limit = series.mean() - (threshold * std_dev)  
    upper_limit = series.mean() + (threshold * std_dev)  
    # 替换异常值为均值  
    series[series < lower_limit] = mean_values[series.name]  
    series[series > upper_limit] = mean_values[series.name]  
    return series  
  
# 应用函数到DataFrame的每一列  
df_replaced = df.apply(replace_outliers_with_mean)  
print(df_replaced)

方式2: 使用IQR(四分位距)识别并处理异常值
import numpy as np    
# 计算IQR并定义异常值范围  
Q1 = df['feature1'].quantile(0.25)  
Q3 = df['feature1'].quantile(0.75)  
IQR = Q3 - Q1  
lower_bound = Q1 - 1.5 * IQR  
upper_bound = Q3 + 1.5 * IQR  

替换或删除异常值

df['feature1'] = np.where((df['feature1'] < lower_bound) | (df['feature1'] > upper_bound), np.nan, df['feature1'])  # 替换为NaN  
df = df.dropna()  # 删除包含NaN的行

方式3: 使用sklearn的IsolationForest识别异常值:
IsolationForest是一种基于随机森林的异常值检测算法。

from sklearn.ensemble import IsolationForest  
  
# 训练异常值检测器  
clf = IsolationForest(contamination=0.1)  # 假设数据集中10%是异常值  
y_pred = clf.fit_predict(X)  
  
# -1表示异常值,1表示正常值  
outliers = X[y_pred == -1]  
inliers = X[y_pred == 1]  
  
# 处理异常值,例如删除它们  
X = inliers

方式4: 使用中位数和IQR缩放或替换异常值:
对于数值特征,可以使用中位数和IQR的缩放因子来替换异常值。

def replace_outliers_with_iqr(df, column, factor=1.5):  
    Q1 = df[column].quantile(0.25)  
    Q3 = df[column].quantile(0.75)  
    IQR = Q3 - Q1  
    lower_bound = Q1 - factor * IQR  
    upper_bound = Q3 + factor * IQR  
    df.loc[df[column] < lower_bound, column] = Q1 - factor * IQR  
    df.loc[df[column] > upper_bound, column] = Q3 + factor * IQR  
    return df  
  
df = replace_outliers_with_iqr(df, 'feature1')

(5)分类特征数据的编码处理

很多场景中,特征数据不是数字值 ,而是离散的文本,如人的特征: [“male”, “female”], [“from Europe”, “from US”, “from Asia”], [“uses Firefox”, “uses Chrome”, “uses Safari”, “uses Internet Explorer”]. 可以用1个数字来代表某个文本,将其编码为. 如
[“male”, “from US”, “uses Internet Explorer”] ==》 [0, 1, 3]
[“female”, “from Asia”, “uses Chrome”] ==> [ 1, 2, 1]

OrdinalEncoder 序列编码器
enc = preprocessing.OrdinalEncoder()
X = [['male', 'from US', 'uses Safari'], ['female', 'from Europe', 'uses Firefox']]
enc.fit(X)
enc.transform([['female', 'from US', 'uses Safari']])
输出:
array([[0., 1., 1.]])
标签编码

preprocessing.LabelEncoder:标签专用,能够将分类转换为数值型数据
对数字编码
在这里插入图片描述

对字符串编码
在这里插入图片描述

OneHot独热编码

与类别编码相似,会把每一个类别特征变换成一个新的整数数字特征,并以One-Hot格式输出,常用的参数:

  • categories
  • ‘auto’ : 根据训练集自动确定各列特征的类别数
  • list : 手动枚举每列特征,这样即使训练集中没有出现过,特能进行编
  • sparse:表示编码的格式,默认为 True,即为稀疏的格式,指定 False 则就不用 toarray() 了
  • handle_unknown:其值可以指定为 “error” 或者 “ignore”,即如果碰到未知的类别,是返回一个错误还是忽略它。
from sklearn.preprocessing import OneHotEncoder

# 构造数据
X_train = [['male', 'from US', 'uses Safari'], 
     ['female', 'from Europe', 'uses Firefox'], 
     ['female', 'from China', 'uses Safari']]
     
# 编码器
encoder = OneHotEncoder()
encoder = encoder.fit(X_train)

# 编码
X = [['female', 'from Europe', 'uses Safari']]
X_transform = encoder.transform(X) 
X_transform.toarray()     # 默认返回的是稀疏矩阵, 用toarray()方法可以转为np.array格式
>> array([[1., 0., 0., 1., 0., 0., 1.]])

如果指定categories 参数,

>>> genders = ['female', 'male']
>>> locations = ['from Africa', 'from Asia', 'from Europe', 'from US']
>>> browsers = ['uses Chrome', 'uses Firefox', 'uses IE', 'uses Safari']
>>> enc = preprocessing.OneHotEncoder(categories=[genders, locations, browsers])
>>> # Note that for there are missing categorical values for the 2nd and 3rd
>>> # feature
>>> X = [['male', 'from US', 'uses Safari'], ['female', 'from Europe', 'uses Firefox']]
>>> enc.fit(X)  # onehot长度:各category元素按顺序排列。
OneHotEncoder(categories=[['female', 'male'],
                          ['from Africa', 'from Asia', 'from Europe',
                           'from US'],
                          ['uses Chrome', 'uses Firefox', 'uses IE',
                           'uses Safari']])
>>> enc.transform([['female', 'from Asia', 'uses Chrome']]).toarray()
array([[1., 0., 0., 1., 0., 0., 1., 0., 0., 0.]])

(6)discretization离散化(分箱)

有的数据,局部是连续的,整体不是连续的。 可以将连续特征划分为离散值, 也有叫分箱。

K-bins discretization

>>> X = np.array([[ -3., 5., 15 ],
...               [  0., 6., 14 ],
...               [  6., 3., 11 ]])
>>> est = preprocessing.KBinsDiscretizer(n_bins=[3, 2, 2], encode='ordinal').fit(X)

缺少输出是采用one-hot编码的矩阵,

PCA 主成分分析

PCA(Principal Component Analysis,主成分分析)主要用于数据的降维。PCA的主要思想是将n维特征映射到k维上(k<n),这k维是全新的正交特征,是重新构造出来的k维特征,而不是简单地从n维特征中去除其余n-k维特征。这k维特征称为主成分,是原始特征的线性组合。

PCA的工作原理是,通过对原始特征空间进行线性变换,寻找一组新的正交基,这组正交基就是主成分。新的特征空间是由这些主成分构成的,并且新空间的维度(即主成分的数量)通常小于原始特征空间的维度。通过这种方式,PCA可以有效地降低数据的维度,同时保留数据中的主要变化信息。

其数学基础:

  • Variance and Convariance
  • Eigen Vectors and Eigen values

算法自己编程实现步骤还是很多, 而用sklearn实现PCA则非常简单:

from sklearn.decomposition import PCA  
from sklearn.datasets import load_iris  
import matplotlib.pyplot as plt  
  
# 加载iris数据集  
iris = load_iris()  
X = iris.data  
y = iris.target  
  
# 初始化PCA,设置目标维度为2  
pca = PCA(n_components=2)  
  
# 对数据进行PCA降维  
X_pca = pca.fit_transform(X)  

机器学习特征数据预处理技术,还与模型类型,目标问题需求关系很大,实现应用时,还可能用到很多numpy方法,有时间用实例代码来说明。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/507248.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

智能仪器替代技术工程师重复工作 专注生产方案优化!

关键词&#xff1a;智能仪器,测径仪,测宽仪,测厚仪,直线度测量仪 在当今竞争激烈的市场环境下&#xff0c;企业需要不断提高生产效率和质量&#xff0c;以满足客户的需求。而技术工程师在生产过程中扮演着至关重要的角色&#xff0c;但他们的时间和精力往往被重复的工作所占据&…

【爬虫框架Scrapy】02 Scrapy入门案例

接下来介绍一个简单的项目&#xff0c;完成一遍 Scrapy 抓取流程。通过这个过程&#xff0c;我们可以对 Scrapy 的基本用法和原理有大体了解。 1. 本节目标 本节要完成的任务如下。 创建一个 Scrapy 项目。 创建一个 Spider 来抓取站点和处理数据。 通过命令行将抓取的内容…

Stable Diffusion WebUI 附加功能/图片放大(Extras):单张图片/批量处理/从目录进行批量处理

本文收录于《AI绘画从入门到精通》专栏&#xff0c;专栏总目录&#xff1a;点这里&#xff0c;订阅后可阅读专栏内所有文章。 大家好&#xff0c;我是水滴~~ 篇文章主要讲解 Stable Diffusion WebUI 的附加功能/图片放大&#xff08;Extras&#xff09;的使用&#xff0c;主要…

IP归属地在互联网行业中的应用

摘要&#xff1a;IP&#xff08;Internet Protocol&#xff09;地址归属地是指互联网上某个IP地址所对应的地理位置信息。在互联网行业中&#xff0c;IP归属地具有重要的应用价值&#xff0c;包括网络安全、广告定向、用户定位等方面。IP数据云将探讨IP归属地在互联网行业中的应…

RUST使用crates.io上的依赖完整教程

1.打开crates.io 2.搜索要使用的依赖,如rand 点击包名,进入包详情页面: 添加依赖方法有两种 1.使用cargo命令 2.直接修改Cargo.toml 使用cargo命令操作如下: 在工程目录执行如下命令: cargo add rand 执行完成后如自动向Cargo.toml中添加依赖如下: 手动修改Cargo.toml是…

社交媒体:12种打造吸引力社交媒体内容的方法

社交媒体在当代社会中扮演着重要的角色&#xff0c;越来越多的人利用社交媒体与朋友、家人和同事保持联系。为了在这个竞争激烈的环境中脱颖而出&#xff0c;我们需要学会如何创建吸引人的内容。本文将介绍12种方法&#xff0c;帮助您在社交媒体上打造引人注目的内容。 1. 挑选…

2024资源环境、材料科学与可持续发展国际会议(RESMSSD2024)

2024资源环境、材料科学与可持续发展国际会议(RESMSSD2024) 会议简介 随着人类对地球资源的不断开发和环境问题的日益严重&#xff0c;资源环境、材料科学与可持续发展成为了全球关注的焦点。为了进一步推动相关领域的发展和创新&#xff0c;2024资源环境、材料科学与可持续发…

Electron的学习

目录 项目初始化可以看官网非常详细根路径创建.vscode文件夹主进程和渲染进程之前的通信ipcRenderer.send和ipcMain.on的使用ipcRenderer.invoke和ipcMain.handle的使用 切换主题模式文件拖放保存消息通知进度展示图标闪烁自定义菜单自定义右键菜单 项目初始化可以看官网非常详…

简单的登录页面

简单的登录页面 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>Title</title><style>* {margin: 0;padding: 0;}html {height: 100%;}body {height: 100%;}.container {height: 100%;ba…

jspm智能仓储系统

摘 要 随着科学技术的飞速发展&#xff0c;社会的方方面面、各行各业都在努力与现代的先进技术接轨&#xff0c;通过科技手段来提高自身的优势&#xff0c;智能仓储系统当然也不能排除在外。智能仓储系统是以实际运用为开发背景&#xff0c;运用软件工程开发方法&#xff0c;采…

jenkins进行自动化部署

jenkins自动化部署 hello&#xff0c;大家好&#xff0c;前文我们已经下载好我们的jenkins了&#xff0c;下面我们用jenkins来实现自动化部署啦&#xff01; 一、下载插件 我们选择插件管理 一个是Maven Integration plugin&#xff0c;一个是 Publish Over SSH 这里因为作…

让工作自动化起来!无所不能的Python

让工作自动化起来&#xff01;无所不能的Python 一、Python是办公自动化的重要工具二、Python是提升职场竞争力的利器三、Python是企业数字化的重要平台四、Python是AI发展的重要通道之一内容简介作者简介前言读者对象如何阅读本书购买链接参与方式 随着我国企业数字化和信息化…

DC-9靶场

一.环境搭建 1.下载地址 靶机下载地址&#xff1a;https://download.vulnhub.com/dc/DC-9.zip 2.虚拟机配置 设置虚拟机为nat&#xff0c;遇到错误点重试和是 开启虚拟机如下图所示 二.开始渗透 1. 信息收集 查找靶机的ip地址 arp-scan -l 发现靶机的ip地址为192.168.11…

● 435. 无重叠区间 ● 763.划分字母区间 ● 56. 合并区间

● 435. 无重叠区间 class Solution:def eraseOverlapIntervals(self, intervals: List[List[int]]) -> int:if len(intervals)1:return 0intervalssorted(intervals,keylambda x:(x[0],x[1]))res0for i in range(1,len(intervals)):if intervals[i][0]<intervals[i-1][…

KUKA机器人更改时间和HMI最小化设置

在使用 KUKA 机器人时&#xff0c;示教器上左边有个“表”的图标&#xff0c;点一下就会显示时间。但一般不准&#xff0c;想要更改时间可以通过HMI最小化后进行更改设置。更改时间需要将示教器界面最小化&#xff0c;也就是进入Windows 界面。通过以下步骤可以进行设置&#x…

自定义口令加入群聊怎么弄?用词令关键词直达口令加入微信群延长群二维码7天有效方法

微信口令加入群聊有二种方式 一、微信面对面建群 微信面对面建群的方式适合现实中的朋友之间相互认识且想要建立群聊的场景。微信面对面建群口令加入群聊的有效距离是在几十米范围内&#xff0c;因此只能是附近几十米范围内的人&#xff0c;正确输入微信面对面建群口令后才可…

Linux---多线程(下)

前情提要&#xff1a;Linux---多线程(上) 七、互斥 临界资源&#xff1a;多线程执行流共享的资源就叫做临界资源临界区&#xff1a;每个线程内部&#xff0c;访问临界资源的代码&#xff0c;就叫做临界区互斥&#xff1a;任何时刻&#xff0c;互斥保证有且只有一个执行流进入临…

雪王涨价?媒介盒子揭秘它的圈粉秘籍

最近蜜雪冰城又又又站上风口浪尖了&#xff0c;起因是有网友发现部门门店涨了一块钱。 随着舆论发酵越来越快&#xff0c;蜜雪冰城回应了问题&#xff0c;表示涨价属实&#xff0c;目前只在上海试行。 原本产品的涨价或降价都是经营常态&#xff0c;为什么蜜雪冰城的涨价能引起…

164.乐理基础-和声小调、旋律小调

内容参考于&#xff1a;三分钟音乐社 上一个内容&#xff1a;163.自然小调、音名为何从C开始 首先是小调式里的和声小调 和声小调就是在自然小调的基础上&#xff0c;把自然小调的第Ⅶ级音升高一个半音&#xff0c;它的内部规则是 全半全全半增二半 带上首调 和声小调只有一个…

react 面试题(2024 最新版)

1. 对 React 的理解、特性 React 是靠数据驱动视图改变的一种框架&#xff0c;它的核心驱动方法就是用其提供的 setState 方法设置 state 中的数据从而驱动存放在内存中的虚拟 DOM 树的更新 更新方法就是通过 React 的 Diff 算法比较旧虚拟 DOM 树和新虚拟 DOM 树之间的 Chan…