scRNA+bulk+MR:动脉粥样硬化五个GEO数据集+GWAS,工作量十分到位

今天给大家分享一篇JCR一区,单细胞+bulk+MR的文章:An integrative analysis of single-cell and bulk transcriptome and bidirectional mendelian randomization analysis identified C1Q as a novel stimulated risk gene for Atherosclerosis

  • 标题:单细胞和批量转录组的整合分析以及双向孟德尔随机化分析确定了C1Q作为动脉粥样硬化新型受刺激风险基因。
  • 发表日期:2023年12月
  • 期刊:Frontiers in Immunology
  • 影响因子:7.3
  • 中科院分区:医学2区
  • 小类:免疫学2区

摘要

背景
补体成分1q(C1Q)相关基因对人类动脉粥样硬化斑块(HAP)的作用尚不清楚。我们的目标是利用单细胞RNA测序(scRNA-seq)和批量RNA分析来建立与C1Q相关的中心基因,以更有效地诊断和预测HAP患者,并利用双向孟德尔随机化(MR)分析探究C1Q与HAP(缺血性中风)之间的关联。

方法
从基因表达数据共享库(GEO)数据库下载HAP scRNA-seq和批量RNA数据。使用GBM、LASSO和XGBoost算法筛选与C1Q相关的中心基因。我们建立了机器学习模型,使用广义线性模型和接收器工作特征(ROC)分析来诊断和区分动脉粥样硬化的类型。此外,我们使用ssGSEA评分了HALLMARK_COMPLEMENT信号通路,并通过在RAW264.7巨噬细胞和apoE-/-小鼠中进行qRT-PCR确认了中心基因的表达。此外,通过双向MR分析评估了C1Q与HAP之间的风险关联,以C1Q作为暴露因素,以缺血性中风(IS,大动脉动脉粥样硬化)为结果。使用倒数方差加权(IVW)作为主要方法。

结果
我们利用scRNA-seq数据集(GSE159677)识别了24个细胞群和12种细胞类型,并在scRNA-seq和GEO数据集中揭示了七个C1Q相关的差异表达基因(DEGs)。然后,我们使用GBMLASSOXGBoost从这七个DEGs中选择了C1QA和C1QC。我们的研究结果表明,无论是训练队列还是验证队列,都能有效诊断出HPAs患者。此外,我们确认SPI1是负责调节HAP中这两个中心基因的潜在转录因子。我们的分析进一步揭示了HALLMARK_COMPLEMENT信号通路与C1QA和C1QC相关且被激活。我们使用qPCR确认了ox-LDL处理的RAW264.7巨噬细胞和apoE-/-小鼠中C1QA、C1QC和SPI1的高表达水平。MR的结果表明,C1Q的遗传风险与IS之间存在正相关,证据是比值比(OR)为1.118(95%CI:1.013-1.234,P = 0.027)。

结论
作者已经成功开发并验证了一个包含两个基因的HAP新型诊断标志,而MR分析提供了支持C1Q对IS有利关联的证据。

关键词:动脉粥样硬化斑块(AP),ScRNA-seq,孟德尔随机化(MR),补体成分1q(C1q),LASSO

结果


图1 人类AP组织的单细胞RNA测序。

  • (A)对总scRNA-seq数据进行不同分辨率的聚类树分析。
  • (B)使用Seurat包(4.1.2)的“FindAllMarkers”功能绘制了每个群集的前三个标记物。红色框表示C1Q细胞群。
  • (C)T分布随机邻居嵌入(tSNE)在0.8的分辨率下显示了24个聚类。
  • (D)tSNE图被着色显示了12种不同的细胞类型。注意:标记基因位于tSNE图下方。
  • (E)生成并按细胞类型着色的AC和PA组之间的12种细胞类型的概述。
  • (F)使用饼图比较了每个组中细胞类型的比例。
  • (G,H)使用Seurat包(4.1.2)将免疫细胞与其他细胞合并后,使用tSNE和饼图描述了AC和AP组之间的细胞类型。


图2 从scRNA-seq和GEO数据集中选择C1Q中心基因。

  • (A)从C1Q细胞群中提取的前十个基因。
  • (B)这10个基因在scRNA-seq中的AC和PA组之间的781个差异表达基因中检测到,并且得到了七个基因(C1QA、C1QB、C1QC、CCL3、HLA-DPA1、FOLR2和HLA-DQA1)以进行进一步分析。
  • (C)LASSO算法选择C1Q中心基因。
  • (D)GBM算法选择C1Q中心基因。
  • (E)XGBoost算法选择C1Q中心基因。
  • (F)三种算法识别了两个基因(C1QA和C1QC)。


图3 scRNA-seq中特征基因的表达和参与的信号通路。

  • (A-C)图显示了使用scRNA-seq在细胞群中C1QA、C1QC和SPI1的表达。
  • (D)三个特征基因在AC组中上调表达。
  • (E)GSEA显示了所有12个细胞群中的信号通路。
  • (F)KEGG图显示了巨噬细胞群中的KEGG通路。


图4 动脉粥样硬化(AP)进展的诊断预测模型。

  • (A)使用广义线性模型(回归)在GSE43292训练队列中使用两个生物标志物构建的诊断预测模型的混淆矩阵显示实际和预测样本(动脉瘤和完整)。
  • (B)使用ROC曲线评估了训练队列中两个标志物的诊断预测准确性(动脉瘤=32,完整=32,AUC=0.842)。
  • (C)PCoA分析显示这两个标志物可以显著区分动脉瘤和完整样本。
  • (D)使用广义线性模型(回归)在GSE41571外部验证队列中使用两个生物标志物构建的诊断预测模型的混淆矩阵显示实际和预测样本(破裂=5,稳定=6)。
  • (E)使用ROC曲线评估了验证队列中两个标志物的诊断预测准确性(破裂=5,稳定=6,AUC=0.933)。
  • (F)PCoA分析显示这两个标志物可以显著区分破裂样本和稳定样本。
  • (G)使用两个生物标志物构建的诊断预测模型在GSE28829外部验证队列中的实际和预测样本的混淆矩阵显示(进展=13,早期=16)。
  • (H)使用ROC曲线评估了验证队列中两个标志物的诊断预测准确性(进展=13,早期=16,AUC=0.938)。
  • (I)PCoA分析显示这两个标志物可以显著区分进展样本和早期样本。


图5 用于诊断和预测HAP与正常对照组的诊断预测模型。

  • (A)使用两个生物标志物在GSE100927外部验证队列中构建的诊断预测模型的混淆矩阵显示实际和预测样本(动脉粥样硬化=69,正常动脉=35)。
  • (B)使用ROC曲线评估了验证队列中两个标志物的诊断预测准确性(动脉粥样硬化=69,正常动脉=35,AUC=0.899)。
  • (C)PCoA分析显示这两个标志物可以显著区分动脉粥样硬化动脉和正常动脉。
  • (D)使用两个生物标志物在GSE100927_Carotid外部验证队列中构建的诊断预测模型的混淆矩阵显示实际和预测样本(颈动脉=29,正常=12)。
  • (E)使用ROC曲线评估了验证队列中两个标志物的诊断预测准确性(颈动脉=29,正常=12,AUC=0.928)。
  • (F)PCoA分析显示这两个标志物可以显著区分颈动脉动脉粥样硬化和正常动脉。
  • (G)使用两个生物标志物在GEO100927_Femoral外部验证队列中构建的诊断预测模型的混淆矩阵显示实际和预测样本(股动脉=26,正常=12)。
  • (H)使用ROC曲线评估了验证队列中两个多组学标志物的诊断预测准确性(股动脉=26,正常=12,AUC=0.981)。
  • (I)PCoA分析显示这两个标志物可以显著区分股动脉中的AP和正常样本。
  • (J)使用两个生物标志物在GSE100927_Infra外部验证队列中构建的诊断预测模型的混淆矩阵显示实际和预测样本(下肢下部领域=14,正常=11)。
  • (K)使用ROC曲线评估了验证队列中两个标志物的诊断预测准确性(下肢下部领域=14,正常=11,AUC=0.89)。
  • (L)PCoA分析显示这两个标志物可以显著区分下肢下部领域中的AP和正常样本。


图6 基于C1Q中心基因的免疫微环境分析。

  • (A)热图显示了通过8种算法在GSE43292队列中动脉瘤和完整样本之间免疫浸润细胞的富集情况。
  • (B)热图显示了通过8种算法在GSE28829队列中早期和晚期样本之间免疫浸润细胞的富集情况。
  • (C)热图显示了通过8种算法在GSE100927队列中动脉粥样硬化斑块和对照样本之间免疫浸润细胞的富集情况。
  • (D-F)比较了GSE43292(D)、GSE28829(E)和GSE100927(F)数据集中高和低C1Q组之间的基质分数、免疫分数、ESTIMATE分数和斑块纯度。


图7 基于C1Q中心基因的免疫信号通路和免疫调节因子评估。

  • (A-C)比较了GSE43292(A)、GSE28829(B)和GSE100927(C)数据集中高低C1Q组之间的16个免疫信号通路,并对免疫信号通路与C1QA或C1QC之间的相关性进行了分析。
  • (D-F)使用七种算法通过热图分析可视化了免疫调节因子的富集情况,分别在GSE43292(D)、GSE28829(E)和GSE100927(F)数据集中进行。


图8 C1QA激活了HAP中的HALLMARK_COMPLEMENT信号通路。

  • (A-F)C1QA对三个GEO数据集(GSE43292、GSE28829和GSE100927)的GSEA分析结果。


图9 C1QA与HAP中的HALLMARK_COMPLEMENT信号通路相关。

  • C1QA基因与HALLMARK_COMPLEMENT信号通路之间的相关性以及它们在不同数据集中的表达水平和信号通路得分之间的关系


图10 SPI1被确定为HAP中的潜在关键转录因子。

  • (A-C)通过NetworkAnalyst 3.0从三个数据库(ENCODE、JASPAR和ChEA)筛选可能调节C1QA和C1QC基因的潜在转录因子。
  • (D)只有SPI1在所有三个GEO数据集(GSE43292、GSE28829和GSE100927)中的表达显著上调,并被视为C1QA和C1QC基因的潜在转录因子。
  • (E-I)IL-1β、CXCL1、CCL3、CCL4和ABCG1基因在所有三个GEO数据集中均上调表达。


图11 C1QA和C1QC的体外和体内验证。

  • (A-C)实时PCR检测氧化低密度脂蛋白(ox-LDL)处理的RAW264.7巨噬细胞组和正常对照组中C1QA和C1QC的相对mRNA表达水平。
  • (D-H)实时PCR检测apoE小鼠的胸主动脉和腹主动脉以及正常小鼠中C1QA、C1QC、IL1B、SPI1和ABCG1的相对mRNA表达值。
  • (I)这五个基因之间呈正相关关系。
  • (J)C1QA和C1QC基因调节的HAP发展的潜在机制。


图12 C1Q对缺血性中风(IS)的MR分析可视化。

  • (A)C1Q对IS影响的散点图MR分析。
  • (B)C1Q相关单核苷酸多态性(SNPs)对IS的因果效应森林图。
  • (C)对C1Q对IS影响的留一法敏感性分析。
  • (D)漏斗图显示SNPs之间无显著异质性。


图13 缺血性中风(IS)对C1Q的MR分析可视化。

  • (A)IS对C1Q影响的散点图MR分析。
  • (B)IS相关单核苷酸多态性(SNPs)对C1Q的因果效应森林图。
  • (C)对IS对C1Q影响的留一法敏感性分析。
  • (D)漏斗图显示SNPs之间无显著异质性。

小结

  • 主要数据及方法:
TypesNotes
转录组数据scRNA:GSE159677;bulkRNA:GSE28829、、GSE43292、GSE41571、GSE100927
其他数据GWAS:IEU openGWAS
分析方法单细胞标准流程;单细胞的GO、KEGG、GSVA和GSEA(Scillus 包);免疫微环境和信号通路富集(IMvigor210CoreBiologies R);机器学习筛选靶点(GBM、LASSO、XGBoost);ROC曲线;MR
实验技术体外细胞逆转录流程;小鼠建模-qPCR、免疫组化
  • 非常严谨的思路和”充满诚意“的工作量,本质上还是单细胞+bulk的一种分析思路,MR充当验证的角色,其次最大的亮点就是多数据集多维度验证,当然还有着实验加持
  • 文章是好文章,值得学习和借鉴~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/506734.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

营业执照印章检测识别技术落地项目

项目效果演示: 输入图片,对电子版和拍摄版都具体良好的效果 示例一: 印章识别 示例二: 拍摄版本,清晰度差 识别结果 训练模型样本数量:一万张印章样本训练 样本上准确率99% 印章文字识别率100% 印章文…

前端对数据进行分组和计数处理

js对数组数据的处理,添加属性,合并表格数据。 let data[{id:1,group_id:111},{id:2,group_id:111},{id:3,group_id:111},{id:4,group_id:222},{id:5,group_id:222} ]let tempDatadata; tempDatatempData.reduce((arr,item)>{let findarr.find(i>i…

【技巧】压缩文件如何设置“自动加密”?

很多人会在压缩文件的时候,同时设置密码,以此保护私密文件。如果经常需要压缩文件并设置密码,不妨使用解压缩软件的“自动加密”功能,更省时省力。 下面介绍WinRAR解压缩软件的两种“自动加密”的方法,一起来看看吧&a…

九河云携手华为云推出海外电商解决方案,一体化解决出海问题

随着国内竞争的日益激烈,国内企业的出海热情正在逐步提高。国外尤其是东南亚等地区,正在成为企业营收的新增长点。九河云携手华为云为客户带来了海外电商部署方案。华为云作为增长最快的云服务提供商,秉持着为客户提供最优质服务的原则&#…

手把手写深度学习(26):统计视频数据集的基本特性(帧数、帧率、长度)和预处理(切分)的自动化脚本

手把手写深度学习(0):专栏文章导航 前言:当算法工程师拿到一个新的视频数据集的时候,需要首先查看一下这个数据集的基本特性,方便后续处理和模型训练。这篇博客提供自动化脚本,帮助统计视频数据集的基本特性&#xff0…

C++入门(以c为基础)——学习笔记

1.前言 首先&#xff0c;c兼容c语言百分之九十八、九十九的内容&#xff0c;可以认为这是两种不分家的语言 c的语法几乎能在c上都能跑 在一个后缀为.cpp的文件中&#xff0c;我们以面向过程的思考&#xff08;C语言的逻辑&#xff09;写下如下代码&#xff1a; #include <s…

基于STM32CubeMX移植freeModbus RTU(从站)-避坑篇

基于STM32CubeMX移植freeModbus RTU&#xff08;从站&#xff09;-避坑篇 &#xff08;重点&#xff09;Chapter0 移植Freemodbus到STM32(基于CubeMX,HAL库)-避坑篇&#xff08;1&#xff09;Freemodbus移植到TTL的USART1可行&#xff0c;但改为485的USART2不行&#xff08;2&a…

科研学习|论文解读——情感对感知偶然信息遭遇的影响研究(JASIST,2022)

原文题目 Investigating the impact of emotions on perceiving serendipitous information encountering 一、引言 serendipity一词最初是由霍勒斯沃波尔创造的&#xff0c;他将其定义为“通过意外和睿智发现你并不追求的事物”。信息研究中大多数现有的偶然性定义从几个角度看…

深度学习理解及学习推荐(持续更新)

主推YouTuBe和Bilibili 深度学习博主推荐&#xff1a; Umar Jamil - YouTubehttps://www.youtube.com/umarjamilai StatQuest with Josh Starmer - YouTubehttps://www.youtube.com/statquest RNN Illustrated Guide to Recurrent Neural Networks: Understanding the Int…

Java基础入门--面向对象课后题(1)

某公司正进行招聘工作&#xff0c;被招聘人员需要填写个人信息&#xff0c;编写“个人简历”的封装类Resume&#xff0c;并编写测试类进行实现。类图及输出效果如下。 类名&#xff1a;Resumename : String (private)sex : String (private)age : int (private)Resume( ) // 没…

【产品设计】四句口诀,搞懂支付交易设计

01 支付交易介绍 支付是交易的一部分&#xff0c;订单是信息流支付是资金流&#xff0c;交易系统通过信息和资金的匹配来完成交易履约。这么说有点抽象&#xff0c;我们通过大家熟悉的电商购物流程来介绍下。 1.1、交易链路 我们做交易设计的时候听到最多的就是“要掌握交易…

数据结构八大常见的排序

数据结构八大常见的排序 常见排序算法分类1.插入排序2.希尔排序(缩小增量排序)3.选择排序4.堆排序5.冒泡排序6.快速排序7.归并排序归并排序非递归的实现8.计数排序 常见排序算法分类 1.插入排序 基本思想&#xff1a;把待排序的数组按大小逐个插入到一个已经排好序的有序序列中…

结构体与位段的定义以及在内存中的存储

目录 结构体的声明 完全声明 不完全声明 结构体变量的定义和初始化 结构体的嵌套 结构体成员的直接访问和间接访问 结构体的自引用 typedef对结构体类型重命名 结构体内存对齐 对齐规则 练习 为什么存在内存对齐 修改默认对齐数 结构体传参 结构体实现位段 位段…

【Linux】认识线程池 AND 手撕线程池(正常版)

文章目录 0.回顾进程池1.计算机层面的池化技术2.线程池预备知识2.1介绍线程池2.2设计线程池的意义是什么&#xff1f;2.3其他知识 3.回顾C类与对象3.1cpp什么情况下成员函数必须是静态的&#xff1f;3.1可变参数列表3.2格式化输出函数3.3预定义符号 4.图解线程池运作原理4.0完整…

创意艺术信息图表绘制方法(六边形图)

创意艺术信息图表绘制方法&#xff08;六边形图&#xff09; 在网络科技发展进步的当下&#xff0c;原来一些传统的统计图表都有了进一步的创新。以前企业的PPT都依赖微软的各应用软件来制作图表&#xff0c;现时企业的PPT展示的图表应用不再满足于Excle&#xff0c;Word等的图…

设计一个动物声音“模拟器”,希望模拟器可以模拟许多动物的叫声。

设计一个动物声音“模拟器”&#xff0c;希望模拟器可以模拟许多动物的叫声。要求如下&#xff1a; &#xff08;1&#xff09;编写接口Animal Animal接口有2个抽象方法cry()和getAnimaName()&#xff0c;即要求实现该接口的各种具体动物类给出自己的叫声和种类名称。 &…

【Linux系列】tree和find命令

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

腾讯云TDSQL(MySQL版)和(PostgreSQL版)TCP认证介绍

腾讯云TDSQL&#xff08;MySQL版&#xff09;TCP认证介绍 数据库交运维高级工程师-腾讯云TDSQL&#xff08;MySQL版&#xff09;-课程体系-云贝教育&#xff08;yunbee.net&#xff09; 培训概述 数据库交付运维高级工程师-腾讯云TDSQL&#xff08;MySQL版&#xff09;培训&…

PetaLinux使用简介

1 概述 PetaLinux 工具提供在 Xilinx 处理系统上定制、构建和调配嵌入式 Linux 解决方案所需的所有组件。该解决方案旨在提升设计生产力&#xff0c;可与 Xilinx 硬件设计工具配合使用&#xff0c;以简化针对 Versal、Zynq™ UltraScale™ MPSoC、Zynq™ 7000 SoC、和 MicroBl…

基于ssm的家庭食谱管理系统(java项目+文档+源码)

风定落花生&#xff0c;歌声逐流水&#xff0c;大家好我是风歌&#xff0c;混迹在java圈的辛苦码农。今天要和大家聊的是一款基于ssm的家庭食谱管理系统。项目源码以及部署相关请联系风歌&#xff0c;文末附上联系信息 。 项目简介&#xff1a; 家庭食谱管理系统的主要使用者…