深度学习理解及学习推荐(持续更新)

主推YouTuBe和Bilibili

深度学习博主推荐:

Umar Jamil - YouTubeicon-default.png?t=N7T8https://www.youtube.com/@umarjamilai

StatQuest with Josh Starmer - YouTubeicon-default.png?t=N7T8https://www.youtube.com/@statquest

RNN 

Illustrated Guide to Recurrent Neural Networks: Understanding the Intuition (youtube.com)icon-default.png?t=N7T8https://www.youtube.com/watch?v=LHXXI4-IEns

Pytorch学习

Learn PyTorch for deep learning in a day. Literally. (youtube.com)icon-default.png?t=N7T8https://www.youtube.com/watch?v=Z_ikDlimN6A

自然语言处理NLP

词嵌入 

(9 封私信 / 16 条消息) 如何最简单、通俗地理解word embedding? - 知乎 (zhihu.com)icon-default.png?t=N7T8https://www.zhihu.com/question/445738869#:~:text=%E5%A6%82%E4%BD%95%E6%9C%80%E7%AE%80%E5%8D%95%E3%80%81%E9%80%9A%E4%BF%97%E5%9C%B0%E7%90%86%E8%A7%A3word%20embedding%EF%BC%9F%201%201%E3%80%81%E4%BB%80%E4%B9%88%E6%98%AF%E8%AF%8D%E5%B5%8C%E5%85%A5%EF%BC%9F%20%E8%AF%8D%E5%B5%8C%E5%85%A5%EF%BC%8C%E8%8B%B1%E6%96%87%20Word%20Embedding%EF%BC%8C%E6%98%AF%E8%87%AA%E7%84%B6%E8%AF%AD%E8%A8%80%E5%A4%84%E7%90%86%E4%B8%AD%E7%9A%84%E4%B8%80%E9%A1%B9%E5%85%B3%E9%94%AE%E6%8A%80%E6%9C%AF%E3%80%82%20%E7%AE%80%E5%8D%95%E6%9D%A5%E8%AF%B4%EF%BC%8C%E5%AE%83%E5%B0%B1%E6%98%AF%E6%8A%8A%E5%8D%95%E8%AF%8D%E6%88%96%E6%B1%89%E5%AD%97%E8%BD%AC%E6%8D%A2%E6%88%90%E5%90%91%E9%87%8F%E7%9A%84%E8%BF%87%E7%A8%8B%E3%80%82,3%E3%80%81%E4%B8%80%E4%B8%AA%E4%BE%8B%E5%AD%90%20%E6%8E%A5%E4%B8%8B%E6%9D%A5%E7%9C%8B%E4%B8%80%E4%B8%AA%E4%BE%8B%E5%AD%90%EF%BC%8C%E6%9D%A5%E6%9B%B4%E7%9B%B4%E8%A7%82%E5%9C%B0%E7%90%86%E8%A7%A3%20word%20embedding%20%E7%9A%84%E4%BD%9C%E7%94%A8%E3%80%82%20%E5%81%87%E8%AE%BE%E6%88%91%E4%BB%AC%E8%A6%81%E5%AF%B9%E4%B8%80%E7%AF%87%E6%96%87%E7%AB%A0%E4%B8%AD%E7%9A%84%E5%8D%95%E8%AF%8D%E8%BF%9B%E8%A1%8C%E7%BC%96%E7%A0%81%EF%BC%8C%E6%9C%89%E5%9B%9B%E4%B8%AA%E5%8D%95%E8%AF%8D%EF%BC%9A%E2%80%9C%E7%8C%AB%E2%80%9D%E3%80%81%E2%80%9C%E7%8B%97%E2%80%9D%E3%80%81%E2%80%9C%E9%B1%BC%E2%80%9D%E3%80%81%E2%80%9C%E8%B7%91%E2%80%9D%E3%80%82%20%E9%A6%96%E5%85%88%EF%BC%8C%E7%94%A8%E6%95%B0%E5%AD%97%E8%A1%A8%E7%A4%BA%E8%BF%99%E4%BA%9B%E5%8D%95%E8%AF%8D%EF%BC%9A%20NLP(一)Word Embeding词嵌入 - 知乎 (zhihu.com)icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/150556238Word Embedding and Word2Vec, Clearly Explained!!! (youtube.com)icon-default.png?t=N7T8https://www.youtube.com/watch?v=viZrOnJclY0(14) A Complete Overview of Word Embeddings - YouTubeicon-default.png?t=N7T8https://www.youtube.com/watch?v=5MaWmXwxFNQ

 Attention注意力机制和self-attention

Attention注意力机制与self-attention自注意力机制 - 知乎Attention注意力机制与self-attention自注意力机制为什么要因为注意力机制在Attention诞生之前,已经有CNN和RNN及其变体模型了,那为什么还要引入attention机制?主要有两个方面的原因,如下: (1) 计算能力的限…icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/265108616动图轻松理解Self-Attention(自注意力机制) - 知乎前言 Self - Attention是Transformer中最核心的思想。我们在阅读Transformer论文的过程中,最难理解的可能就是自注意力机制实现的过程和繁杂的公式。本文在 Illustrated: Self-Attention这篇文章的基础上,加上了…icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/619154409

从RNN到Attention_短距离数据依赖模式是什么-CSDN博客文章浏览阅读845次,点赞2次,收藏16次。上次我们讲到,传统神经网络无法获取时序信息,但时序信息在自然语言处理任务中非常重要!例如 “我吃了一个苹果”这一句话,“苹果” 的词性和意思,取决于前面词的信息,如果没有 “我吃了一个” 这些词,“苹果”也可以翻译为乔布斯的“Apple”。RNN中的Attention注意力模型_短距离数据依赖模式是什么https://blog.csdn.net/weixin_68191319/article/details/129216141?spm=1001.2014.3001.5501 

hkproj/pytorch-transformer: Attention is all you need implementation (github.com)icon-default.png?t=N7T8https://github.com/hkproj/pytorch-transformerAttention 和 Self-Attention [一万字拆解 Attention,全网最详细的注意力机制讲解] - 知乎上一篇文章 从 RNN 到 Attention 我们在RNN的Encoder-Decoder框架下引入了Attention 机制,用来解决 RNN 模型中梯度下降以及性能瓶颈问题,如下图所示: 上图就是引入了 Attention 机制的 Encoder-Decoder 框架。…icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/609523552nlp中的Attention注意力机制+Transformer详解 - 知乎JayJay有自己的公众号啦,以后文章都在那里哦,欢迎关注《高能AI》公众号本文以QA形式对自然语言处理中注意力机制(Attention)进行总结,并对Transformer进行深入解析。 目录一、Attention机制剖析 1、为什么要引…icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/53682800

transfomer

Attention is all you need (Transformer) - Model explanation (including math), Inference and Training (youtube.com)icon-default.png?t=N7T8https://www.youtube.com/watch?v=bCz4OMemCcA

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/506721.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java基础入门--面向对象课后题(1)

某公司正进行招聘工作,被招聘人员需要填写个人信息,编写“个人简历”的封装类Resume,并编写测试类进行实现。类图及输出效果如下。 类名:Resumename : String (private)sex : String (private)age : int (private)Resume( ) // 没…

【产品设计】四句口诀,搞懂支付交易设计

01 支付交易介绍 支付是交易的一部分,订单是信息流支付是资金流,交易系统通过信息和资金的匹配来完成交易履约。这么说有点抽象,我们通过大家熟悉的电商购物流程来介绍下。 1.1、交易链路 我们做交易设计的时候听到最多的就是“要掌握交易…

数据结构八大常见的排序

数据结构八大常见的排序 常见排序算法分类1.插入排序2.希尔排序(缩小增量排序)3.选择排序4.堆排序5.冒泡排序6.快速排序7.归并排序归并排序非递归的实现8.计数排序 常见排序算法分类 1.插入排序 基本思想:把待排序的数组按大小逐个插入到一个已经排好序的有序序列中…

结构体与位段的定义以及在内存中的存储

目录 结构体的声明 完全声明 不完全声明 结构体变量的定义和初始化 结构体的嵌套 结构体成员的直接访问和间接访问 结构体的自引用 typedef对结构体类型重命名 结构体内存对齐 对齐规则 练习 为什么存在内存对齐 修改默认对齐数 结构体传参 结构体实现位段 位段…

【Linux】认识线程池 AND 手撕线程池(正常版)

文章目录 0.回顾进程池1.计算机层面的池化技术2.线程池预备知识2.1介绍线程池2.2设计线程池的意义是什么?2.3其他知识 3.回顾C类与对象3.1cpp什么情况下成员函数必须是静态的?3.1可变参数列表3.2格式化输出函数3.3预定义符号 4.图解线程池运作原理4.0完整…

创意艺术信息图表绘制方法(六边形图)

创意艺术信息图表绘制方法(六边形图) 在网络科技发展进步的当下,原来一些传统的统计图表都有了进一步的创新。以前企业的PPT都依赖微软的各应用软件来制作图表,现时企业的PPT展示的图表应用不再满足于Excle,Word等的图…

设计一个动物声音“模拟器”,希望模拟器可以模拟许多动物的叫声。

设计一个动物声音“模拟器”,希望模拟器可以模拟许多动物的叫声。要求如下: (1)编写接口Animal Animal接口有2个抽象方法cry()和getAnimaName(),即要求实现该接口的各种具体动物类给出自己的叫声和种类名称。 &…

【Linux系列】tree和find命令

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

腾讯云TDSQL(MySQL版)和(PostgreSQL版)TCP认证介绍

腾讯云TDSQL(MySQL版)TCP认证介绍 数据库交运维高级工程师-腾讯云TDSQL(MySQL版)-课程体系-云贝教育(yunbee.net) 培训概述 数据库交付运维高级工程师-腾讯云TDSQL(MySQL版)培训&…

PetaLinux使用简介

1 概述 PetaLinux 工具提供在 Xilinx 处理系统上定制、构建和调配嵌入式 Linux 解决方案所需的所有组件。该解决方案旨在提升设计生产力,可与 Xilinx 硬件设计工具配合使用,以简化针对 Versal、Zynq™ UltraScale™ MPSoC、Zynq™ 7000 SoC、和 MicroBl…

基于ssm的家庭食谱管理系统(java项目+文档+源码)

风定落花生,歌声逐流水,大家好我是风歌,混迹在java圈的辛苦码农。今天要和大家聊的是一款基于ssm的家庭食谱管理系统。项目源码以及部署相关请联系风歌,文末附上联系信息 。 项目简介: 家庭食谱管理系统的主要使用者…

前端 - 基础 表单标签 - 表单元素 input - type 属性 ( 单选按钮和复选按钮 )

input 标签 type 属性 ,上一篇讲了 输入框 和 密码框 这节看看 单选按钮 和 复选 按钮 目录 单选按钮 : 复选按钮 # 看上图就可以看到 单选按钮 -- radio 和 复选 按钮 -- checkbox 单选按钮 : 所谓单选按钮就是 有时…

Can‘t connect to server on ‘localhost‘ (10061)

问题:电脑关机重启后,连接不上mysql了,报错信息如下:2002 - Cant connect to server on localhost (10061)解决办法:很大的原因是mysql服务没有启动,需要你重启一下mysql: 以管理员的身份运行cm…

R使用netmeta程序包实现二分类数据的频率学网状meta分析

该研究检索了Cochrane对照试验中心注册,CINAHL,Embase,LILACS数据库,MEDLINE,MEDLINEIn-Process,PsycINFO,监管机构网站,以及从一开始就发布和未发表的双盲随机对照试验的国际注册20…

重构智能防丢产品,苹果Find My技术引领市场发展

目前市场上最主要的防丢技术是蓝牙防丢和GPS防丢,蓝牙防丢是通过感应防丢器与绑定手机的距离来实现防丢的。一般防丢会默认设置一个最远安全距离,超过这个安全距离后,与手机蓝牙信号断开,触发防丢报警,用户根据防丢报警…

百度贝塞尔曲线证码识别代码

一、前言 百度出了如图所示的验证码,需要拖动滑块,与如图所示的曲线轨迹进行重合。经过不断研究,终于解决了这个问题。我把识别代码分享给大家。 下面是使用selenium进行验证的,这样可以看到轨迹滑动的过程,如果需要…

Leetcode 234. 回文链表

心路历程: 一开始想到用栈,但是发现还是得到中点后才开始判断,时间空间没什么区别,还不如直接获取数组后正逆对比; 看了网上的O(1)空间复杂度方法,意思是按照奇数偶数判断完之后&am…

保护JavaScript代码安全性:探究JScrambler、JShaman、JSFack等常用加密混淆工具

摘要 本篇技术博客将介绍五款常用且好用的在线JavaScript加密混淆工具,包括 jscrambler、JShaman、jsfack、freejsobfuscator 和 jjencode。通过对这些工具的功能及使用方法进行详细解析,帮助开发人员更好地保护和加密其 JavaScript 代码,提…

142.环形链表

给定一个链表的头节点 head ,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。 如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整…

Spring Boot集成JPA快速入门demo

1.JPA介绍 JPA (Java Persistence API) 是 Sun 官方提出的 Java 持久化规范。它为 Java 开发人员提供了一种对象/关联映射工具来管理 Java 应用中的关系数据。他的出现主要是为了简化现有的持久化开发工作和整合 ORM 技术,结束现在 Hibernate,TopLink&am…