kruskal算法相比prim算法思路简单,不用处理边界问题,不用堆优化,所以一般稀疏图都用Kruskal。
Kruskal算法时间复杂度O(mlogm)
每条边存结构体里,排序需要在结构体里重载小于号
判断a,b点是否连通以及将点假如集合中需要并查集的知识
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 100010, M = 200010;
int n, m;
int p[N];
struct Edge
{
int a, b, w;
bool operator< (const Edge& W)const
{
return w < W.w;
}
}edges[M];
int find(int x)
{
if(p[x] != x) p[x] = find(p[x]);
return p[x];
}
int Kruskal()
{
int res = 0,cnt = 0;
for(int i = 1; i <= n; i ++ )
{
p[i] = i;
}
for(int i = 0; i < m; i ++ )
{
int a = find(edges[i].a), b = find(edges[i].b);
if(a != b)
{
p[a] = b;
res += edges[i].w;
cnt ++ ;
}
}
if(cnt < n - 1) return 0;
else return res;
}
int main()
{
cin >> n >> m;
for(int i = 0; i < m; i ++ )
{
int a, b, w;
cin >> a >> b >> w;
edges[i].a = a, edges[i].b = b, edges[i].w = w;
}
sort(edges, edges + m);
int t = Kruskal();
if(!t) cout << "impossible" << endl;
else cout << t << endl;
return 0;
}