炼丹!训练 stable diffusion 来生成LoRA定制模型

AI作画

LoRA,英文全称Low-Rank Adaptation of Large Language Models,直译为大语言模型的低阶适应,这是微软的研究人员为了解决大语言模型微调而开发的一项技术。 比如,GPT-3有1750亿参数,为了让它能干特定领域的活儿,需要做微调,但是如果直接对GPT-3做微调,成本太高太麻烦了。

LoRA的做法是,冻结预训练好的模型权重参数,然后在每个Transformer(Transforme就是GPT的那个T)块里注入可训练的层,由于不需要对模型的权重参数重新计算梯度,所以,大大减少了需要训练的计算量。 研究发现,LoRA的微调质量与全模型微调相当,要做个比喻的话,就好比是大模型的一个小模型,或者说是一个插件。

根据显卡性能不同,训练一般需要一个到几个小时的时间,这个过程俗称炼丹!

主要步骤有以下这些,话不多说,开整!

1. 显卡

首先是要有显卡了,推荐8G显存以上的N卡。然后就是装GPU驱动,可以参考我以前文章centos中docker使用GPU

2. 训练环境

自从有了docker,我就不喜欢在宿主机上装一堆开发环境了,所以这次就直接使用stable-diffusion-webui带webui打包好的镜像,也方便训练完成以后测试。推荐一下 kestr3l/stable-diffusion-webui 这个镜像,是基于 nvidia/cuda:11.7.1-devel-ubuntu22.04 镜像,本人亲自测试过,可用的。 附一个我用的 docker-compose.yml 文件

version: "3"
services: 
  sd-webui:
    image: kestr3l/stable-diffusion-webui:1.1.0
    container_name: sd-webui
    restart: always
    ports:
      - "7860:7860"
      - "7861:7861"
    ulimits:
      memlock: -1
      stack: 67108864
    shm_size: 4G
    deploy:
      resources:
        limits:
          cpus: "8.00"
          memory: 16G
        reservations:
          devices:
            - capabilities: [gpu]
    volumes:
      # 这里主要是方便映射下载的模型文件
      - ./models:/home/user/stable-diffusion-webui/models:cached
      # 修改容器的默认启动脚本,方便我们手动控制
      - ./entrypoint-debug.sh:/usr/local/bin/entrypoint.sh:cached

entrypoint-debug.sh文件内容:

#! /bin/sh
python3

可以去 civitai 下载 stable diffusion 的模型,放到宿主机的 ./models/Stable-diffusion 目录下面,也可以去下载一些LoRA模型丢在./models/Lora 目录下。

模型准备完毕了就可以跑个 stable diffusion 图形化界面试试看, 执行./webui.sh -f --listen 命令,启动之前会下载安装很多依赖包,国内环境不太顺,可以上代理安装。

如果输出以下内容,则表示安装成功:

root@cebe51b82933:/home/user/stable-diffusion-webui# ./webui.sh -f --listen

################################################################
Install script for stable-diffusion + Web UI
Tested on Debian 11 (Bullseye)
################################################################

################################################################
Running on root user
################################################################

################################################################
Repo already cloned, using it as install directory
################################################################

################################################################
Create and activate python venv
################################################################

################################################################
Launching launch.py...
################################################################
./webui.sh: line 168: lspci: command not found
Python 3.10.6 (main, Nov 14 2022, 16:10:14) [GCC 11.3.0]
Commit hash: <none>
Installing requirements for Web UI
Launching Web UI with arguments: --listen
No module 'xformers'. Proceeding without it.
LatentDiffusion: Running in eps-prediction mode
DiffusionWrapper has 859.52 M params.
Loading weights [fc2511737a] from /home/user/stable-diffusion-webui/models/Stable-diffusion/chilloutmix_NiPrunedFp32Fix.safetensors
Applying cross attention optimization (Doggettx).
Textual inversion embeddings loaded(0): 
Model loaded in 16.0s (0.8s create model, 14.9s load weights).
Running on local URL:  http://0.0.0.0:7860

To create a public link, set `share=True` in `launch()`.

打开浏览器访问:http://127.0.0.1:7860 或者 http://内网ip:7860 就可以AI绘画了 AI作画

AI美女

AI美女

不得不说 chilloutmix_NiPrunedFp32Fix 模型生成的图片是针不戳😍!

3. 安装训练图形化界面

为了降低训练门槛,这里选用的是基于Gradio做的一个WebGui图形化界面,该项目在GitHub上叫Kohya’s GUI。

# 下载项目
git clone https://github.com/bmaltais/kohya_ss.git
# 执行安装脚本
cd kohya_ss
bash ubuntu_setup.sh

由于是在docker内部执行,ubuntu_setup.sh 脚本可能有问题,所以我一般是直接进入容器,手动单条执行

apt install python3-tk
python3 -m venv venv
source venv/bin/activate
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 --extra-index-url https://download.pytorch.org/whl/cu116
pip install --use-pep517 --upgrade -r requirements.txt
pip install -U -I --no-deps https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/linux/xformers-0.0.14.dev0-cp310-cp310-linux_x86_64.whl

执行accelerate config命令,生成对应配置文件,选项如下:

(venv) root@cebe51b82933:/home/user/kohya_ss# accelerate config
2023-03-13 06:45:22.678222: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-03-13 06:45:22.922383: E tensorflow/stream_executor/cuda/cuda_blas.cc:2981] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
2023-03-13 06:45:23.593040: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.7/lib64:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
2023-03-13 06:45:23.593158: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.7/lib64:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
2023-03-13 06:45:23.593177: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
--------------------------------------------------------------------------------------------------In which compute environment are you running?
This machine                                                                                      
--------------------------------------------------------------------------------------------------Which type of machine are you using?                                                              
No distributed training                                                                           
Do you want to run your training on CPU only (even if a GPU is available)? [yes/NO]:NO            
Do you wish to optimize your script with torch dynamo?[yes/NO]:NO                                 
Do you want to use DeepSpeed? [yes/NO]: NO                                                        
What GPU(s) (by id) should be used for training on this machine as a comma-seperated list? [all]:all                                                                                                
--------------------------------------------------------------------------------------------------Do you wish to use FP16 or BF16 (mixed precision)?
fp16                                                                                              
accelerate configuration saved at /root/.cache/huggingface/accelerate/default_config.yaml

4. 启动训练图形化界面

执行命令python kohya_gui.py --listen 0.0.0.0 --server_port 7861 --inbrowser --share

(venv) root@cebe51b82933:/home/user/kohya_ss# python kohya_gui.py --listen 0.0.0.0 --server_port 7861 --inbrowser --share                                                                         
Load CSS...
Running on local URL:  http://0.0.0.0:7861
Running on public URL: https://49257631b1b39d3db5.gradio.live

This share link expires in 72 hours. For free permanent hosting and GPU upgrades (NEW!), check out Spaces: https://huggingface.co/spaces

这时候浏览器就可以打开http://127.0.0.1:7861 端口了,界面如下: 训练web界面

5. 准备要训练的图片

找到你要用来训练的一些图片放到统一文件夹下,建议15张以上,我这里就用汤唯的照片: 原始图片文件夹

然后打开stable diffusion webui来预处理这些图片: 预处理图片

点击Preprocess按钮,等待处理完成。顺利的的话会在dest文件夹下生成512*512的图片,和描述词文件 image.png

6. 开始训练

我们去训练的界面,需要设置一堆参数,直接看图吧

基础模型选择

文件夹选择

训练参数配置

建议新建立文件夹,比如我这里叫train_lora,在文件夹里创建image、log和model三个文件夹,其中,image里存放的图片就是预处理生成的图片。 image里的预处理图片不能直接放在里面,需要在里面创建一个文件夹,文件夹的命名非常有讲究。 已知,LoRa的训练需要至少1500步,而每张图片至少需要训练100步。 如果我们有15张或者15张以上张图片,文件夹就需要写上100_Hunzi。 如果训练的图片不够15张,比如10张,就需要改为150_Hunzi,以此类推。 这部分很重要,一定要算清楚。 当然,这也正是LoRa强大的地方,用这么少的图片即可完成训练。

点击训练按钮,开始炼丹: 炼丹

生成的丹就在train_lora/model文件夹下面: image.png

最终使用这个丹的生成的图片效果展示: image.png

image.png

写在最后

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/474778.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【C++从练气到飞升】04---拷贝构造函数

&#x1f388;个人主页&#xff1a;库库的里昂 ✨收录专栏&#xff1a;C从练气到飞升 &#x1f389;鸟欲高飞先振翅&#xff0c;人求上进先读书。 目录 ⛳️推荐 一、拷贝构造函数的引入 1. 以日期类为例:进行的值拷贝是不会发生错误的 2. 以栈类为例:进行的值拷贝会发现发…

AI论文速读 |(Mamba×时空图预测!) STG-Mamba:通过选择性状态空间模型进行时空图学习

&#xff08;来了来了&#xff0c;虽迟但到&#xff0c;序列建模的新宠儿mamba终于杀入了时空预测&#xff01;&#xff09; 论文标题&#xff1a;STG-Mamba: Spatial-Temporal Graph Learning via Selective State Space Model 作者&#xff1a;Lincan Li, Hanchen Wang&…

Java中的I/O讲解(超容易理解)(中篇)

如果想观看更多Java内容 可上我的个人主页关注我&#xff0c;地址 子逸爱编程-CSDN博客https://blog.csdn.net/a15766649633?spm1000.2115.3001.5343 使用工具 IntelliJ IDEA Community Edition 2023.1.4 使用语言 Java8 代码能力快速提升小方法&#xff0c;看完代码自己…

学几招静态路由配置技巧,让你事半功倍!

中午好&#xff0c;我的网工朋友。 静态路由是在网络设备上手动配置的路由信息&#xff0c;用于指定数据包的传输路径。 无论是项目中交换机的静态路由配置&#xff0c;还是在公司网络中路由器的静态路由设置&#xff0c;都有非常多的应用。 与动态路由协议不同&#xff0c;…

java每日一题——幸运囚犯(合集遍历,查询数据练习)

前言&#xff1a; 合集基本学完了&#xff0c;做做题巩固下知识点。打好基础&#xff0c;daydayup! 题目如下&#xff1a; 目前有100名囚犯&#xff0c;每个囚犯的编号是1-200之间的随机数。现在要求依次随机生成100名囚犯的编号&#xff08;要求这些囚犯的编号是不能重复的&a…

DCDC电源管理芯片MC34063A,内含温度补偿的参考电压源(1.25V)、比较器、能有效限制电流及控制工作周期的振荡器,驱动器及大电流输出开关管等

MC34063A 为一单片 DC-DC 变换集成电路&#xff0c;内含温度补偿的参考电压源&#xff08;1.25V&#xff09;、比较器、能有效限制电流及控制工作周期的振荡器&#xff0c;驱动器及大电流输出开关管等。外配少量元件&#xff0c;就能组成升压、降压及电压反转型 DC-DC 变换器。…

基于net的医院病历管理系统

摘 要 伴随着我国社会的发展&#xff0c;人民生活质量日益提高。互联网逐步进入千家万户&#xff0c;改变传统的管理方式&#xff0c;医院病历管理系统以互联网为基础&#xff0c;利用net技术&#xff0c;和SQL Server数据库开发设计一套医院病历管理系统&#xff0c;提高工作…

C++第九弹---类与对象(六)

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】【C详解】 日期类 1、日期类的分析和设计 1.1、日期类的功能说明 1.2、日期类的分析和设计 1.2.1、数据结构的分析 1.2.2、文件结构设计 2、日期类的结构分析…

Blender 3D建模要点

3d模型可以为场景的仿真模拟带来真实感&#xff0c;它还有助于更轻松地识别场景中的所有内容。 例如&#xff0c;如果场景中的所有对象都是简单的形状&#xff0c;如立方体和圆形&#xff0c;则很难在仿真中区分对象。 1、碰撞形状与视觉形状 像立方体和球体这样的简单形状&a…

火灾自动报警及消防联动控制系统主机的九个主要组成部分

关于火灾报警联动系统的主机组成&#xff0c;一般有两种不同的概括&#xff0c;下面分别讨论。 一&#xff1a; 火灾报警主机的组成部分较多&#xff0c;主要包括以下消防设备&#xff1a;主电源、联动电源、打印机、驱动器、直接控制板、总线控制板、消防广播、消防电话主机…

免费Web应用防火墙:uuWAF

一款国产的由社区驱动的免费、高性能、高扩展顶级Web应用安全防护产品-南墙。南墙 WEB应用防火墙&#xff08;简称&#xff1a;uuWAF&#xff09;是有安科技推出的一款全方位网站防护产品。通过有安科技专有的WEB入侵异常检测等技术&#xff0c;结合有安科技团队多年应用安全的…

多功能、功耗低。工作温度范围宽(-40℃~+80℃),性价比高,并可与MAXIM、AD等公司的uP监控产品兼容的国产芯片——D706

概 述 近年来&#xff0c;微处理器在IT业控制领域和智能化产品中得到了广泛的应用。在系统和产品的开发设计过程中&#xff0c;为了提高其抗干扰能力&#xff0c;使用uP监控是首选技术措施之一。监控芯片可为系统提供上电、掉电复位功能&#xff0c;也可提供其它功能&#x…

【感悟《剑指offer》典型编程题的极练之路】01数组篇!

​​​​​​​ ​​​​​​​ 个人主页&#xff1a;秋风起&#xff0c;再归来~ ​​​​​​​ 文章所属专栏&#xff1a;《剑指offer》典型编程题的极练之路 ​​​​​​​ ​​​​​​​ …

CSS其他属性

文章目录 1. vertical-align1.1. 概念1.2. 常用值1.3. 作用1.4. 出现的情况一1.4.1. 原因1.4.2. 解决方案 1.5. 出现情况二1.5.1. 解决方案一1.5.2. 解决方案二1.5.3. 解决方案三 1.6. 出现情况三1.6.1. 原因1.6.2. 解决方案 2. 溢出效果2.1. 作用2.2. 属性名 3. 隐藏效果3.1. …

买卖股票的最佳时机1,2,3

买卖股票的最佳时机 力扣题目链接 dp[i][0] 表示第i天持有股票所得最多现金 定义二维数组 两列 &#xff1a;0代表持有股票 1代表不持有股票 行代表第几天 dp[i][0] max(dp[i - 1][0], -prices[i]); 第i天持有股票&#xff1a;两种情况 第一种是昨天就已经持有股票了 所…

NVM使用教程

文章目录 ⭐️写在前面的话⭐️1、卸载已经安装的node2、卸载nvm3、安装nvm4、配置路径以及下载源5、使用nvm下载node6、nvm常用命令7、全局安装npm、cnpm8、使用淘宝镜像cnpm9、配置全局的node仓库&#x1f680; 先看后赞&#xff0c;养成习惯&#xff01;&#x1f680;&#…

探索AI+电商领域应用与发展

AI火的已经一塌糊涂了&#xff0c;已经有很大一部分的企业和个人已经坐上了这趟超音速列车&#xff0c;但对于电商领域具体都有哪些助理&#xff0c;目前为止还是比较散&#xff0c;今天来顺一下AIGC之与电商到底带来了些什么&#xff1f; 一、什么是AIGC AIGC是内容生产方式…

个人开发者上架App流程

摘要 个人开发者完全可以将自己开发的App上传至应用商店进行上架。本文将介绍上架流程的通用步骤&#xff0c;包括确定App功能和定位、准备相关资料、开发App、提交审核、发布App和宣传推广等内容。 引言 个人开发者在如今的移动应用市场中也有机会将自己的作品推向更广泛的…

C++之模版详解

一.array与vector对比 由图发现&#xff0c;使用array数组是必须提前开好空间&#xff0c;而vector是顺序表&#xff0c;可以实现动态开辟空间 array也支持迭代器&#xff0c;如下&#xff1a; int main() {array<int, 10> arr{ 1,2,3,4,5,6,7,8,9,10 };auto it arr.be…

重生奇迹MU 的全部地图

卓越首饰类&#xff1a;火项链、毒戒指——海1小巴、美人鱼、卡2门口&#xff0c;卡1最里面&#xff0c;地3等等 雷项链&#xff0c;冰戒指——海1蓝翼怪&#xff0c;卡2龙虾以上&#xff0c;失落3&#xff08;门口黄金点哦&#xff0c;盛产冰戒指&#xff09;等等 冰项链——…