【人工智能】英文学习材料03(每日一句)

🌻个人主页:相洋同学
🥇学习在于行动、总结和坚持,共勉!

 目录

Chain Rule (链式法则)

Dimensionality Reduction (降维)

Long Short-Term Memory (LSTM) (长短期记忆网络)

Gradient Explosion (梯度爆炸)

Gradient Vanishing (梯度消失)

Dropout (Dropout)

Seq2Seq (Seq2Seq)

One-Hot Encoding (One-Hot 编码)

Self-Attention Mechanism (自注意力机制)

Multi-Head Attention Mechanism (多头注意力机制)


Chain Rule (链式法则)

The Chain Rule is a fundamental principle in calculus used to compute the derivative of a composite function. It states that if you have two functions, where one function is applied to the result of another function, the derivative of the composite function is the derivative of the outer function multiplied by the derivative of the inner function.

  • fundamental(基本的、根本的)
  • calculus (微积分)
  • derivative (导数)
  • composite function (复合函数)
  • function (函数)
  • multiplied (乘以)

Dimensionality Reduction (降维)

Dimensionality Reduction refers to the process of reducing the number of random variables under consideration by obtaining a set of principal variables. It's often used in the field of machine learning and statistics to simplify models, improve speed, and reduce noise in data.

  • refers to(概念、指的是)
  • random variables (随机变量)
  • principal variables (主要变量)
  • statistics (统计学)
  • simplify (简化)

Long Short-Term Memory (LSTM) (长短期记忆网络)

Long Short-Term Memory networks, or LSTMs, are a special kind of Recurrent Neural Network (RNN) capable of learning long-term dependencies. LSTMs are designed to avoid the long-term dependency problem, allowing them to remember information for long periods.

  • long-term dependencies (长期依赖)
  • long-term dependency problem (长期依赖问题)
  • periods (周期)

Gradient Explosion (梯度爆炸)

Gradient Explosion refers to a problem in training deep neural networks where gradients of the network's loss function become too large, causing updates to the network's weights to be so large that they overshoot the optimal values, leading to an unstable training process and divergence.

  • overshoot (超过)
  • optimal values (最优值)
  • unstable (不稳定)
  • divergence (发散)

Gradient Vanishing (梯度消失)

Gradient Vanishing is a problem encountered in training deep neural networks, where the gradients of the network's loss function become too small, significantly slowing down the training process or stopping it altogether, as the network weights fail to update in a meaningful way.

  • encountered (遇到)
  • significantly (显著地)
  • altogether (完全)
  • meaningful way (有意义的方式)

Dropout (Dropout)

Dropout is a regularization technique used in training neural networks to prevent overfitting. By randomly omitting a subset of neurons during the training process, dropout forces the network to learn more robust features that are not dependent on any single set of neurons.

  • regularization technique (正则化技术)
  • prevent (防止)
  • omitting (省略)
  • subset (子集)
  • robust features (健壮的特征)
  • dependent (依赖)
  • single set (单一集合)

Seq2Seq (Seq2Seq)

Seq2Seq, or Sequence to Sequence, is a model used in machine learning that transforms a given sequence of elements, such as words in a sentence, into another sequence. This model is widely used in tasks like machine translation, where an input sentence in one language is converted into an output sentence in another language.

  • Sequence to Sequence (序列到序列)
  • transforms (转换)
  • sequence (序列)
  • elements (元素)
  • converted into(将某物变换或转换成)

One-Hot Encoding (One-Hot 编码)

One-Hot Encoding is a process where categorical variables are converted into a form that could be provided to ML algorithms to do a better job in prediction. It represents each category with a vector that has one element set to 1 and all other elements set to 0.

  • categorical variables (类别变量)
  • converted (转换)
  • ML algorithms (机器学习算法)
  • represents (表示)
  • category (类别)
  • element (元素)

Self-Attention Mechanism (自注意力机制)

The Self-Attention Mechanism allows a model to weigh the importance of different parts of the input data differently. It is an essential component of Transformer models, enabling them to dynamically prioritize which parts of the input to focus on as they process data.

  • weigh (权衡)
  • essential component (重要组成部分)
  • dynamically (动态地)
  • prioritize (优先考虑)
  • process data (处理数据)

Multi-Head Attention Mechanism (多头注意力机制)

The Multi-Head Attention Mechanism is a technique used in Transformer models that allows the model to attend to information from different representation subspaces at different positions. It performs multiple self-attention operations in parallel, enhancing the model's ability to focus on various aspects of the input data simultaneously.

  • attend to (关注)
  • representation subspaces (表示子空间)
  • positions (位置)
  • performs (执行)
  • self-attention operations (自注意力操作)
  • parallel (并行)
  • enhancing (增强)
  • various aspects (各个方面)
  • simultaneously (同时)

以上

君子坐而论道,少年起而行之,共勉

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/466977.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java项目:63 ssm网上花店设计+vue

作者主页:舒克日记 简介:Java领域优质创作者、Java项目、学习资料、技术互助 文中获取源码 项目介绍 系统具备友好性且功能完善。管理员登录进入后台之后,主要完成花材选择管理,用户管理,鲜花管理,鲜花出入…

计算机网络实践学习 思科实验31:配置思科DHCP

思科实验31:配置思科DHCP 实验拓扑图实验目标实验步骤实验配置 实验拓扑图 实验目标 配置思科设备作为DHCP服务器 实验步骤 配置OSPF路由协议配置R1为DHCP服务器配置DHCP中继,使得PC3可以获得地址全网通信测试 实验配置 1、配置R1为DHCP服务器&…

React Native: could not connect to development server

问题: 运行模拟器错误:无法连接到开发服务器 原因分析: 1、确认模拟器连接状态,是连接成功的 查看进程的端口占用,也没问题 lsof -i tcp:8081 kill pid2、检查包服务器是否运行正常 连接真机进行调试发现真机是正常…

【力扣精选算法100道】——带你了解(数组模拟栈)算法

目录 💻比较含退格的字符串 🎈了解题意 🎈分析题意 🚩栈 🚩数组模拟栈 🎈实现代码 844. 比较含退格的字符串 - 力扣(LeetCode) 💻比较含退格的字符串 &#x1f3…

查看网卡和网关命令

ifconfig(接口配置) 是一个网络管理工具,它用于配置和查看 Linux 操作系统中网络接口的状态,使用ifconfig,您可以分配 IP 地址、启用或禁用接口、管理 ARP 缓存、路由等。 ping命令是个使用频率极高的网络诊断工具。…

win32汇编弹出对话框

之前书上有一个win32 asm 的odbc例子,它有一个窗体,可以执行sql;下面看一下弹出一个录入数据的对话框; 之前它在.code段包含2个单独的asm文件,增加第三个,增加的这个里面是弹出对话框的窗口过程&#xff0…

01初识Python

一、Python 简介 二、为什么要学Python? 三、Python 安装 四、输出第一条指令 五、总结 一、Python 简介 Python是一种高级编程语言,由Guido van Rossum于1991年创建。它具有简单易学的语法结构,被广泛应用于Web开发、数据科学、人工智…

LeetCode刷题记录:(11)组合(初识回溯算法)

leetcode传送通道 暂时记录&#xff0c;这篇没啥营养&#xff0c;不用看了 class Solution {List<List<Integer>> result new ArrayList<>(); // 存所有组合List<Integer> path new LinkedList<>(); //存每一个组合public List<List<Int…

高效使用git流程分享

准备 假设你已经 clone 了当前仓库&#xff0c;并且你的终端位置已经位于仓库目录中。 查询状态 查询状态常用的命令有 git status 和 git branch。 前者用于查询更改文件情况&#xff0c;后者用于展示所有分支。 chatbot-system$ git status On branch develop Your bran…

基于SpringBoot和Vue的图书个性化推荐系统的设计与实现

今天要和大家聊的是一款基于SpringBoot和Vue的图书个性化推荐系统。 &#x1f495;&#x1f495;作者&#xff1a;李同学 &#x1f495;&#x1f495;个人简介&#xff1a;混迹在java圈十年有余&#xff0c;擅长Java、微信小程序、Python、Android等&#xff0c;大家有这一块的…

Spring-3

目录 Spring AOP和AspectJ AOP 在Spring AOP 中&#xff0c;关注点和横切关注的区别 Spring 框架中的单例 Bean 是线程安全的吗 Spring 是怎么解决循环依赖的&#xff1f; 事务隔离级别 事务的传播级别 Spring 事务实现方式 Spring框架的事务管理有哪些优点 事务注解的…

【鸿蒙HarmonyOS开发笔记】如何使用图片插帧将低像素图片清晰放大

开发UI时&#xff0c;当我们的原图分辨率较低并且需要放大显示时&#xff0c;图片会模糊并出现锯齿。如下图所示 这时可以使用interpolation()方法对图片进行插值&#xff0c;使图片显示得更清晰。该方法的参数为ImageInterpolation枚举类型&#xff0c;可选的值有: ImageInte…

Git 仓库瘦身与 LFS 大文件存储

熟悉 Git 的小伙伴应该都知道随着 Git 仓库维护的时间越来越久&#xff0c;追踪的文件越来越多&#xff0c;git 存储的 objects 数量会极其庞大&#xff0c;每次从远程仓库 git clone 的时候都会墨迹很久。如果我们不小心 git add 了一个体积很大的文件&#xff0c;且 git push…

从历年315曝光案例,看APP隐私合规安全

更多网络安全干货内容&#xff1a;点此获取 ——————— 随着移动互联网新兴技术的发展与普及&#xff0c;移动APP的应用渗透到人们的衣食住行方方面面&#xff0c;衍生出各类消费场景的同时&#xff0c;也带来了无数的个人隐私数据泄露、网络诈骗事件。 历年来&#xff…

python 调用redis创建查询key

部署redis apiVersion: apps/v1 # 描述api版本&#xff0c;默认都用这个 kind: Deployment # 资源类型&#xff0c;可以配置为pod&#xff0c;deployment&#xff0c;service&#xff0c;statefulset等等 metadata: # deployment相关的元数据&#xff0c;用于描述deployment的…

分享一个不错的three.js开源项目

项目将three.js相关内容封装为相应库 很值得学习&#xff0c;可以模仿项目学习three.js vue-vite-three.js threejs-park: 基于vue3&#xff0c;threeJS智慧园区 threejs-park

Java八股文(XXL-JOB)

Java八股文のXXL-JOB XXL-JOB XXL-JOB xxl-job 是什么&#xff1f;它的主要作用是什么&#xff1f; xxl-job 是一款分布式任务调度平台&#xff0c;用于解决分布式系统中的定时任务和异步任务调度问题。 它提供了任务的注册、调度、执行和监控等功能&#xff0c;能够帮助开发者…

测试进阶必备,这5款http接口自动化测试工具不要太香~

现在市场上能做接口自动化测试的工具有很多&#xff0c;一搜一大把&#xff0c;让人眼花缭乱。我们去选择对应实现方式时&#xff0c;不管是框架体系还是成熟稳定的工具&#xff0c;核心目的都是期望引入的技术能在最低投入的情况下达到最优效果。 那么我们选择依据出来了&…

08|记忆:通过Memory记住客户上次买花时的对话细节

无论是LLM还是代理都是无状态的&#xff0c;每次模型的调用都是独立于其他交互的。也就是说&#xff0c;我们每次通过API开始和大语言模型展开一次新的对话&#xff0c;它都不知道你其实昨天或者前天曾经和它聊过天了。 使用ConversationChain from langchain import OpenAI…

数据分析-Pandas的Andrews曲线可视化解读

数据分析-Pandas的Andrews曲线可视化解读 数据分析和处理中&#xff0c;难免会遇到各种数据&#xff0c;那么数据呈现怎样的规律呢&#xff1f;不管金融数据&#xff0c;风控数据&#xff0c;营销数据等等&#xff0c;莫不如此。如何通过图示展示数据的规律&#xff1f; 数据…