08|记忆:通过Memory记住客户上次买花时的对话细节

无论是LLM还是代理都是无状态的,每次模型的调用都是独立于其他交互的。也就是说,我们每次通过API开始和大语言模型展开一次新的对话,它都不知道你其实昨天或者前天曾经和它聊过天了。

使用ConversationChain

from langchain import OpenAI
from langchain.chains import ConversationChain

# 初始化大语言模型
llm = OpenAI(
    temperature=0.5,
    model_name="text-davinci-003"
)

# 初始化对话链
conv_chain = ConversationChain(llm=llm)

# 打印对话的模板
print(conv_chain.prompt.template)

The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.

Current conversation:
{history}
Human: {input}
AI:
  • {history} 是存储会话记忆的地方,也就是人类和人工智能之间对话历史的信息。
  • {input} 是新输入的地方,你可以把它看成是和ChatGPT对话时,文本框中的输入

image.png

使用ConversationBufferMemory

在LangChain中,通过ConversationBufferMemory(缓冲记忆)可以实现最简单的记忆机制。

from langchain import OpenAI
from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import ConversationBufferMemory

# 初始化大语言模型
llm = OpenAI(
    temperature=0.5,
    model_name="text-davinci-003")

# 初始化对话链
conversation = ConversationChain(
    llm=llm,
    memory=ConversationBufferMemory()
)

# 第一天的对话
# 回合1
conversation("我姐姐明天要过生日,我需要一束生日花束。")
print("第一次对话后的记忆:", conversation.memory.buffer)

#输出:
第一次对话后的记忆: 
Human: 我姐姐明天要过生日,我需要一束生日花束。
AI:  哦,你姐姐明天要过生日,那太棒了!我可以帮你推荐一些生日花束,你想要什么样的?我知道有很多种,比如玫瑰、康乃馨、郁金香等等。
# 回合2
conversation("她喜欢粉色玫瑰,颜色是粉色的。")
print("第二次对话后的记忆:", conversation.memory.buffer)

#输出
第二次对话后的记忆: 
Human: 我姐姐明天要过生日,我需要一束生日花束。
AI:  哦,你姐姐明天要过生日,那太棒了!我可以帮你推荐一些生日花束,你想要什么样的?我知道有很多种,比如玫瑰、康乃馨、郁金香等等。
Human: 她喜欢粉色玫瑰,颜色是粉色的。
AI:  好的,那我可以推荐一束粉色玫瑰的生日花束给你。你想要多少朵?我可以帮你定制一束,比如说十朵、二十朵或者更多?

实际上,这些聊天历史信息,都被传入了ConversationChain的提示模板中的 {history} 参数,构建出了包含聊天记录的新的提示输入。
有了记忆机制,LLM能够了解之前的对话内容,这样简单直接地存储所有内容为LLM提供了最大量的信息,但是新输入中也包含了更多的Token(所有的聊天历史记录),这意味着响应时间变慢和更高的成本。
但是token太长,也是需要解决。

使用ConversationBufferWindowMemory

ConversationBufferWindowMemory 是缓冲窗口记忆,它的思路就是只保存最新最近的几次人类和AI的互动。

from langchain import OpenAI
from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import ConversationBufferWindowMemory

# 创建大语言模型实例
llm = OpenAI(
    temperature=0.5,
    model_name="text-davinci-003")

# 初始化对话链
conversation = ConversationChain(
    llm=llm,
    memory=ConversationBufferWindowMemory(k=1)
)

# 第一天的对话
# 回合1
result = conversation("我姐姐明天要过生日,我需要一束生日花束。")
print(result)
# 回合2
result = conversation("她喜欢粉色玫瑰,颜色是粉色的。")
# print("\n第二次对话后的记忆:\n", conversation.memory.buffer)
print(result)

# 第二天的对话
# 回合3
result = conversation("我又来了,还记得我昨天为什么要来买花吗?")
print(result)

第三回合的输出:
{'input': '我又来了,还记得我昨天为什么要来买花吗?', 
'history': 'Human: 她喜欢粉色玫瑰,颜色是粉色的。\nAI:  好的,那粉色玫瑰花束怎么样?我可以帮你找到一束非常漂亮的粉色玫瑰花束,你觉得怎么样?', 
'response': '  当然记得,你昨天来买花是为了给你喜欢的人送一束粉色玫瑰花束,表达你对TA的爱意。'}

如果设置 k=1,这意味着窗口只会记住与AI之间的最新的互动,即只保留上一次的人类回应和AI的回应。

使用ConversationSummaryMemory

上面说了,如果模型在第二轮回答的时候,能够说出“我可以帮你为你姐姐找到…”,那么在第三轮回答时,即使窗口大小 k=1,还是能够回答出正确答案。
因为模型在回答新问题的时候,对之前的问题进行了总结性的重述
ConversationSummaryMemory(对话总结记忆)的思路就是将对话历史进行汇总,然后再传递给 {history} 参数。这种方法旨在通过对之前的对话进行汇总来避免过度使用 Token。
ConversationSummaryMemory有这么几个核心特点

  1. 汇总对话:此方法不是保存整个对话历史,而是每次新的互动发生时对其进行汇总,然后将其添加到之前所有互动的“运行汇总”中。
  2. 使用LLM进行汇总:该汇总功能由另一个LLM驱动,这意味着对话的汇总实际上是由AI自己进行的。
  3. 适合长对话:对于长对话,此方法的优势尤为明显。虽然最初使用的 Token 数量较多,但随着对话的进展,汇总方法的增长速度会减慢。与此同时,常规的缓冲内存模型会继续线性增长。
from langchain.chains.conversation.memory import ConversationSummaryMemory

# 初始化对话链
conversation = ConversationChain(
    llm=llm,
    memory=ConversationSummaryMemory(llm=llm)
)

第一回合的输出:
{'input': '我姐姐明天要过生日,我需要一束生日花束。', 
'history': '', 
'response': ' 我明白,你需要一束生日花束。我可以为你提供一些建议吗?我可以推荐一些花束给你,比如玫瑰,康乃馨,百合,仙客来,郁金香,满天星等等。挑选一束最适合你姐姐的生日花束吧!'}
第二回合的输出:
{'input': '她喜欢粉色玫瑰,颜色是粉色的。', 
'history': "\nThe human asked what the AI thinks of artificial intelligence. The AI thinks artificial intelligence is a force for good because it will help humans reach their full potential. The human then asked the AI for advice on what type of flower bouquet to get for their sister's birthday, to which the AI provided a variety of suggestions.", 
'response': ' 为了为你的姐姐的生日准备一束花,我建议你搭配粉色玫瑰和白色康乃馨。你可以在玫瑰花束中添加一些紫色的满天星,或者添加一些绿叶以增加颜色对比。这将是一束可爱的花束,让你姐姐的生日更加特别。'}
第三回合的输出:
{'input': '我又来了,还记得我昨天为什么要来买花吗?', 
'history': "\n\nThe human asked what the AI thinks of artificial intelligence. The AI thinks artificial intelligence is a force for good because it will help humans reach their full potential. The human then asked the AI for advice on what type of flower bouquet to get for their sister's birthday, to which the AI suggested pink roses and white carnations with the addition of purple aster flowers and green leaves for contrast. This would make a lovely bouquet to make the sister's birthday extra special.",
'response': ' 确实,我记得你昨天想买一束花给你的姐姐作为生日礼物。我建议你买粉红色的玫瑰花和白色的康乃馨花,再加上紫色的雏菊花和绿叶,这样可以让你的姐姐的生日更加特别。'}

这里,我们不仅仅利用了LLM来回答每轮问题,还利用LLM来对之前的对话进行总结性的陈述,以节约Token数量
通过对话历史的汇总来优化和管理 Token 的使用,ConversationSummaryMemory 为那些预期会有多轮的、长时间对话的场景提供了一种很好的方法。然而,这种方法仍然受到 Token 数量的限制。在一段时间后,我们仍然会超过大模型的上下文窗口限制

使用ConversationSummaryBufferMemory

对话总结缓冲记忆,它是一种混合记忆模型,结合了上述各种记忆机制,包括ConversationSummaryMemory 和 ConversationBufferWindowMemory的特点。这种模型旨在在对话中总结早期的互动,同时尽量保留最近互动中的原始内容。
它是通过max_token_limit这个参数做到这一点的。当最新的对话文字长度在300字之内的时候,LangChain会记忆原始对话内容;当对话文字超出了这个参数的长度,那么模型就会把所有超过预设长度的内容进行总结,以节省Token数量。

from langchain.chains.conversation.memory import ConversationSummaryBufferMemory

# 初始化对话链
conversation = ConversationChain(
    llm=llm,
    memory=ConversationSummaryBufferMemory(
        llm=llm,
        max_token_limit=300))

image.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/466955.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据分析-Pandas的Andrews曲线可视化解读

数据分析-Pandas的Andrews曲线可视化解读 数据分析和处理中,难免会遇到各种数据,那么数据呈现怎样的规律呢?不管金融数据,风控数据,营销数据等等,莫不如此。如何通过图示展示数据的规律? 数据…

在浏览器中使用websocket协议

在浏览器中使用websocket协议 浏览器中提供了 WebSocket 类,我们可以直接使用: new WebSocket((url: string | URL, protocols?: string | string[] | undefined))url:指定连接的 URL,只支持 ws、wss 协议,否则会提…

Transformer总结

1.Transform背景介绍 1.1Transform的优势 相比于之前占领市场的LSTM和GRU模型,Transformer有两个显著的优势: (1)Transform能够使用分布式GPU进行并行训练,提升模型训练效率 (2) 在分析预测…

springboot280基于WEB的旅游推荐系统设计与实现

旅游推荐系统设计与实现 传统办法管理信息首先需要花费的时间比较多,其次数据出错率比较高,而且对错误的数据进行更改也比较困难,最后,检索数据费事费力。因此,在计算机上安装旅游推荐系统软件来发挥其高效地信息处理…

Tensorflow2.0 - 链式法则例子

本笔记简单记录链式法则的原理,关于链式法则,本身和高等数学中的链式求导法则是一样的,深度学习中相关资料可以参考这里: 【深度学习之美22】BP算法详解之链式法则 - 知乎10.5 什么是计算图?我们知道, 神经…

SpringBoot(拦截器+文件上传)

文章目录 1.拦截器1.基本介绍2.应用实例1.去掉Thymeleaf案例中使用session进行权限验证的部分2.编写自定义拦截器 LoginInterceptor.java 实现HandlerInterceptor接口的三个方法3.注册拦截器1.第一种方式 配置类直接实现WebMvcConfigurer接口,重写addInterceptors方…

RBAC用户权限控制

用资源和操作绑定角色,角色绑定用户和操作 对应 两两绑定需要中间表来绑定 RestController public class UserAuthApi {Autowiredprivate UserSupport userSupport;Autowiredprivate UserAuthService userAuthService;GetMapping("/user-authorities")pu…

使用Navicat远程连接Linux中的MySQL

一、登录MySQL数据库 mysql -uroot -pXjm123456 二、使用mysql数据库 use mysql; 三、查询user表中包含host的字段 select user,host from user;### 该字段中,localhost表示只允许本机访问,可以将‘localhost’改为‘%’,‘%’表…

汇总全网免费API,持续更新(新闻api、每日一言api、音乐。。。)

Public&FreeAPI 网址:apis.whyta.cn (推荐) UomgAPI 网址:https://api.uomg.com 教书先生 网址:https://api.oioweb.cn/ 山海API https://api.shserve.cn/ 云析API铺 https://api.a20safe.com/ 韩小韩…

小鹏MONA将至:10 - 15万级,用性价比打新势力,用智驾打比亚迪

‍ 作者 |老缅 编辑 |德新 小鹏的全新品牌即将发布,10-15万级也能有高等级智能驾驶。 3月16日在中国电动汽车百人会论坛2024上,小鹏汽车董事长、CEO何小鹏提出:“下一个十年将是智能化的十年。未来18个月内高阶智驾的拐点将到来”。 所谓…

数据机构-2

线性表 概念 顺序表 示例&#xff1a;创建一个存储学生信息的顺序表 表头&#xff08;Tlen总长度&#xff0c; Clen当前长度&#xff09; 函数 #include <seqlist.c> #include <stdio.h> #include <stdlib.h> #include "seqlist.h" #include &…

LeetCode 面试经典150题 274.H指数

题目&#xff1a; 给你一个整数数组 citations &#xff0c;其中 citations[i] 表示研究者的第 i 篇论文被引用的次数。计算并返回该研究者的 h 指数。 根据维基百科上 h 指数的定义&#xff1a;h 代表“高引用次数” &#xff0c;一名科研人员的 h 指数 是指他&#xff08;她…

类和对象(2)

封装的概念 访问限定符 Java中主要通过类和访问权限来实现封装&#xff1a;类可以将数据以及封装数据的方法结合在一起&#xff0c;更符合人类对事物的认知&#xff0c;而访问权限用来控制方法或者字段能否直接在类外使用。Java中提供了四种访问限定符&#xff1a; 在 Java 中…

柔性纤维将织物带入信息时代

一种用半导体器件嵌入纤维的技术可以产生数百米长的无缺陷股线。用这些线编织的服装提供了对未来可穿戴电子产品的诱人一瞥。 想象一下&#xff0c;一顶可水洗的帽子可以帮助盲人感知交通信号灯的变化&#xff0c;或者一件衣服可以在佩戴者穿过博物馆时充当导游。这些技术可以…

Jingle Bio:产品出海的最重要一课是「重营销轻技术」?

名字: Jingle Bio 开发者 / 团队: Luo Baishun 平台: Web 请简要介绍下这款产品 Jingle Bio 是一款不需要任何编程基础就可以轻松驾驭的个人网站制作工具&#xff0c;你可以使用 Jingle Bio 来展示自己的作品、技能、经历、成就、爱好等&#xff0c;构建自己的个人品牌。 哪个瞬…

蓝桥杯第642题——跳蚱蜢

题目描述 如下图所示&#xff1a; 有 9 只盘子&#xff0c;排成 1 个圆圈。 其中 8 只盘子内装着 8 只蚱蜢&#xff0c;有一个是空盘。 我们把这些蚱蜢顺时针编号为 1 ~ 8。 每只蚱蜢都可以跳到相邻的空盘中&#xff0c; 也可以再用点力&#xff0c;越过一个相邻的蚱蜢跳到空盘…

手撕算法-二叉树的镜像

题目描述 操作给定的二叉树&#xff0c;将其变换为源二叉树的镜像。数据范围&#xff1a;二叉树的节点数 0≤_n_≤1000 &#xff0c; 二叉树每个节点的值 0≤_val_≤1000要求&#xff1a; 空间复杂度 O(n) 。本题也有原地操作&#xff0c;即空间复杂度 O(1) 的解法&#xff0c…

双线性插值

1.线性插值 即是提供一次线性已知点去拟合曲线再求得插值点。 2.原理 两次不同方向的插值&#xff0c;先对已知的四个点的值通过两次一次线性插值获取两个点&#xff0c;再通过刚刚获得的两个点的值再进行一次线性插值&#xff0c;从而根据已知的四个点的值获得一个未知的点…

Layui实现删除及修改后停留在当前页

1、功能概述&#xff1f; 我们在使用layui框架的table显示数据的时候&#xff0c;会经常的使用分页技术&#xff0c;这个我们期望能够期望修改数据能停留在当前页&#xff0c;或者删除数据的时候也能够停留在当前页&#xff0c;这样的用户体验会更好一些&#xff0c;但往往事与…