Matlab|基于目标级联法的微网群多主体分布式优化调度

目录

主要内容   

1.1 上层微网群模型

1.2 下层微网模型

  部分程序   

 实现效果   

下载链接


主要内容   

本文复现《基于目标级联法的微网群多主体分布式优化调度》文献的目标级联部分,

建立微网群系统的两级递阶优化调度模型: 上层是微网群能量调度中心优化调度模型,下层是子微网优化调度模型,然后对所建递阶优化调度模型耦合性和分布性进行分析,采用一种新型的协同优化方法———目标级联法,实现上下层模型的解耦独立优化,以3微网为算例进行验证,证明方法的可行性。

1.1 上层微网群模型

1.2 下层微网模型

  部分程序   

%程序开发时间:2023年1月26日
%欢迎关注微信公众号:电力程序
%----------------------------
%%目标级联协调优化
gPMG = zeros(3,24);%微网群与微网间联络功率
gPpcc1 = zeros(1,24);%微网1与微网群联络功率,下同
gPpcc2 =zeros(1,24);
gPpcc3 = zeros(1,24);
parameterATC;
figure(1);
errorSet = [];
for k=1:8
[y1(k),gPpcc1,x_P_g1,x_P_ch1,x_P_dis1,x_P_w1,x_P_v1,x_c_ld1,Load1]=lower1(pho,gPMG,v,w);%下层微网1
[y2(k),gPpcc2,x_P_ch2,x_P_dis2,x_P_w2,x_P_v2,x_c_ld2,Load2]=lower2(pho,gPMG,v,w);%下层微网2
[y3(k),gPpcc3,x_P_g3,x_P_ch3,x_P_dis3,x_P_w3,x_P_v3,x_c_ld3,Load3]=lower3(pho,gPMG,v,w);%下层微网3
[y4(k),gPMG]=upperthree(pho,v,w,gPpcc1,gPpcc2,gPpcc3);%上层微网群
%%----得到结果----
gPMG=value(gPMG);
gPpcc1=value(gPpcc1);
gPpcc2=value(gPpcc2);
gPpcc3=value(gPpcc3);
gPMGc(:,k)=gPMG(:,10);%10时刻微网群连接变量数据储存
gPpcc1c(k)=gPpcc1(10);%10时刻微网1连接变量数据储存
gPpcc2c(k)=gPpcc2(10);%10时刻微网2连接变量数据储存
gPpcc3c(k)=gPpcc3(10);%10时刻微网3连接变量数据储存
  postError = norm(gPMG-[gPpcc1;gPpcc2;gPpcc3])
    disp(sprintf('postError=%f',postError));
        errorSet = [errorSet postError];
        %画图
    figure(1),plot(errorSet),pause(0.1)
    xlabel('迭代次数');
    ylabel('误差值');
    v=v+2*w*w*postError;
    w=beta*w;
    yalmip('clear');
end
%最终迭代后结果图
figure;
ldz=max(x_c_ld1,0);
ldf=min(x_c_ld1,0);
wwz=max(gPpcc1,0);
wwf=min(gPpcc1,0);
yyf=[-x_P_ch1;ldf;wwf]';
bar(yyf,'stack');
hold on
yyz=[-x_P_dis1;x_P_g1;x_P_w1;x_P_v1;ldz;wwz]';
bar(yyz,'stack');
plot(Load1,'r','LineWidth',1.5)
xlabel('时间/h');
ylabel('功率/MW');
title('微网1功率');
sy=legend('储能充电','负荷响应','接受微网群电功率','储能放电','发电','风电','光伏','负荷响应','供给其他微网','微网1负荷');
sy.NumColumns = 3;
ylim([-6 14]);
figure;
ldz=max(x_c_ld2,0);
ldf=min(x_c_ld2,0);
wwz=max(gPpcc2,0);
wwf=min(gPpcc2,0);
yyf=[-x_P_ch2;ldf;wwf]';
bar(yyf,'stack');
hold on
yyz=[-x_P_dis2;x_P_w2;x_P_v2;ldz;wwz]';
bar(yyz,'stack');
plot(Load2,'r','LineWidth',1.5)
xlabel('时间/h');
ylabel('功率/MW');
title('微网2功率');
sy=legend('储能充电','负荷响应','接受微网群电能','储能放电','风电','光伏','负荷响应','供给其他微网','微网2负荷');
sy.NumColumns = 3;
ylim([-2 8]);
figure;
ldz=max(x_c_ld3,0);
ldf=min(x_c_ld3,0);
wwz=max(gPpcc3,0);
wwf=min(gPpcc3,0);
yyf=[-x_P_ch3;ldf;wwf]';
bar(yyf,'stack');
hold on
yyz=[-x_P_dis3;x_P_g3;x_P_w3;x_P_v3;ldz;wwz]';
bar(yyz,'stack');
plot(Load3,'r','LineWidth',1.5)
xlabel('时间/h');
ylabel('功率/MW');
title('微网3功率');
sy=legend('储能充电','负荷响应','接受微网群电能','储能放电','发电','风电','光伏','负荷响应','供给其他微网','微网3负荷');
sy.NumColumns = 3;
ylim([-5 11]);
figure;
title_name = '微网群连接变量时段10趋同过程';
title(title_name);   %%关键
subplot(311)
plot(gPpcc1c,'o--','LineWidth',1.5)
hold on
plot(gPMGc(1,:),'r-o','LineWidth',1.5)
grid on
legend('下层连接变量值','上层连接变量值');
xlabel('迭代次数');
ylabel('子微网1联络功率');
subplot(312)
plot(gPpcc2c,'o--','LineWidth',1.5)
hold on
plot(gPMGc(2,:),'r-o','LineWidth',1.5)
grid on
xlabel('迭代次数');
ylabel('子微网2联络功率');
subplot(313)
plot(gPpcc3c,'o--','LineWidth',1.5)
hold on
plot(gPMGc(3,:),'r-o','LineWidth',1.5)
grid on
xlabel('迭代次数');
ylabel('子微网3联络功率');

 实现效果   

下载链接

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/441120.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

python爬虫(3)

上一次的代码结果如下: 当然会有一点点不一样是正常的表现,因为这个图本身使用随机数rand函数做的,用其他两种随机函数出来的结果也不会完全相同。 继上节这次带来的是数组的重塑和转置 1、一维数组的重塑 在NumPy模块中的reshape()函数可…

黑马点评-附近商户实现

GEO数据结构 Redis在3.2版本中加入了对GEO的支持,允许存储地理坐标信息,根据经纬度来检索数据。 GEO本质上是基于sortedSet实现的,在Sorted Set中,每个成员都是与一个分数(score)相关联的,这个分数用于对成员进行排序…

LeetCode-102.题: 二叉树的层序遍历(原创)

【题目描述】 给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。 示例 1: 输入:root [3,9,20,null,null,15,7] 输出:[[3],[9,20],[15,7]] 【题目链接…

如何将任何文本转换为概念图(GC)

原文地址:how-to-convert-any-text-into-a-graph-of-concepts 使用 Mistral 7B 将任何文本语料库转换为知识图的方法 2023 年 11 月 10 日 使用递归 RAG 方法来实现具有多跳推理的 QnA,以回答基于大型文本语料库的复杂查询。 知识图增强生成与递归 R…

goby的安装和使用

简介 Goby是一款基于网络空间测绘技术的新一代网络安全工具,它通过给目标网络建立完整的资产知识库,进行网络安全事件应急与漏洞应急。 Goby可提供最全面的资产识别,目前预置了超过10万种规则识别引擎,能够针对硬件设备和软件业…

深入探索Docker数据卷:实现容器持久化存储的完美方案(下)

🐇明明跟你说过:个人主页 🏅个人专栏:《Docker入门到精通》 《k8s入门到实战》🏅 🔖行路有良友,便是天堂🔖 目录 四、Docker数据卷的高级管理 1、数据卷的生命周期管理 2、数据…

2001-2022年上市公司利润表数据

2001-2022年上市公司利润表数据 1、时间:2001.12.31-2022.12.31 2、范围:上市公司 3、指标:证券代码、证券简称、统计截止日期、报表类型、投资收益、其中:对联营企业和合营企业的投资收益、公允价值变动收益、营业利润、其他综…

网关数据采集解决方案-天拓四方

随着物联网技术的快速发展,数据采集已成为企业运营、管理和决策的重要支撑。网关作为连接不同网络的关键设备,其在数据采集过程中发挥着至关重要的作用。本文将详细介绍一种网关数据采集解决方案,旨在确保数据采集的高效性、准确性和安全性。…

「解析文件流,Java之FileOutputStream助您轻松操作文件!」

🏆本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,助你一臂之力,带你早日登顶🚀,欢迎大家关注&&收藏!持续更新中,up!up!up!&#xf…

【Java项目介绍和界面搭建】拼图小游戏——作弊码、查看完整图片

🍬 博主介绍👨‍🎓 博主介绍:大家好,我是 hacker-routing ,很高兴认识大家~ ✨主攻领域:【渗透领域】【应急响应】 【Java】 【VulnHub靶场复现】【面试分析】 🎉点赞➕评论➕收藏 …

HarmonyOS 数据持久化 关系型数据库之 初始化操作

上文 HarmonyOS 数据持久化之首选项 preferences 我们有说用户首选项 但它只能处理一些比较简单的数据类型结构 的持久化处理 如果是一些批量较大 结构较为复杂的数据结构 那么 首选项就无法满足了 我们就要选择 关系型数据库 通过 SQLite 组件实现的一种本地数据库&#xff0…

TCP包头

TCP包头: 1.序号:发送端发送数据包的编号 2.确认号:已经确认接收到的数据的编号(只有当ACK为1时,确认号才有用) TCP为什么安全可靠: 1.在通信前建立三次握手连接 SYN SYNACK ACK SYN是TCP包头的一个字段 tcp.port 端口号 抓包数据 2.在通信过程中通过序…

JavaWeb笔记 --- 一JDBC

一、JDBC JDBC就是Java操作关系型数据库的一种API DriverManager 注册驱动可以不写 Class.forName("com.mysql.jdbc.Driver"); Connection Statement ResultSet PrepareStatement 密码输入一个SQL脚本,直接登录 预编译开启在url中 数据库连接池

指针进阶(下)指针实操

sizeof 和 strlen 首先我们来复习一下sizeof 和 strlen 的区别。 sizeof 是操作符&#xff0c;只关注内存中存放的数据的大小&#xff0c;并不会参与sizeof 括号内部的计算。注意它的单位是字节 #include <stdio.h>int main() {int a 10;printf("%d\n", size…

USB2.0设备检测过程信号分析

1.简介 USB设备接入的Hub端口负责检测USB2.0设备是否存在和确定USB2.0设备的速度。检测设备是否存在和确定设备速度涉及一系列的信号交互&#xff0c;下面将分析该过程。 2.硬件 USB低速设备和全速/高速设备的连接器在硬件结构上有所不同&#xff0c;而主机或者Hub接收端连接…

redis中的zset的原理

一、zset有序集合的原理 如果有序集合元素个数少于128个且元素值小于64字节&#xff0c;使用压缩列表&#xff08;新版本已经废弃压缩列表改用listpack数据结构了&#xff09; 如果不满足上述条件&#xff0c;采用跳表作为redis的底层数据结构 二、压缩列表 1.由连续内存块组…

一张照片一键换脸:无需数据集和训练 | 开源日报 No.186

s0md3v/roop Stars: 23.6k License: AGPL-3.0 roop 是一个一键换脸的项目。 该项目可以通过一张目标人物的照片&#xff0c;实现对视频中人脸进行替换&#xff0c;无需数据集和训练。其主要功能、关键特性和核心优势包括&#xff1a; 可以在计算机上运行&#xff0c;并支持 C…

mysql 8.0 日志文件无权限问题处理

无论如何修改权限总是报这个日志文件权限问题。 解决方法 输入指令&#xff1a; setenforce 0 systemctl restart mysgld

csgo搬砖核心步骤,月入1000-10000你也可以的!

近年网络游戏产业的爆炸式增长&#xff0c;虚拟物品的交易需求也越来越大&#xff0c;为了满足虚拟物品的交易需求&#xff0c;网络游戏交易平台开始兴起和发展。网游交易平台的交易项目包括帐号交易、游戏币交易、装备交易这几种主要交易项目&#xff0c;其交易模式可分为C2C模…

01、python_爬虫的相关概念

一、什么是爬虫&#xff1f; 爬虫是网络爬虫的简称&#xff0c;指的是一种自动化程序&#xff0c;用于在互联网上抓取信息。爬虫的核心工作包括爬取网页、解析数据和存储数据。 通俗来说就是&#xff1a;通过一个程序&#xff0c;根据url(http://taobao.com)进行爬取网页&…