YOLOv5-Openvino和ONNXRuntime推理【CPU】

1 环境:

CPU:i5-12500
Python:3.8.18

2 安装Openvino和ONNXRuntime

2.1 Openvino简介

Openvino是由Intel开发的专门用于优化和部署人工智能推理的半开源的工具包,主要用于对深度推理做优化。

Openvino内部集成了Opencv、TensorFlow模块,除此之外它还具有强大的Plugin开发框架,允许开发者在Openvino之上对推理过程做优化。

Openvino整体框架为:Openvino前端→ Plugin中间层→ Backend后端
Openvino的优点在于它屏蔽了后端接口,提供了统一操作的前端API,开发者可以无需关心后端的实现,例如后端可以是TensorFlow、Keras、ARM-NN,通过Plugin提供给前端接口调用,也就意味着一套代码在Openvino之上可以运行在多个推理引擎之上,Openvino像是类似聚合一样的开发包。

2.2 ONNXRuntime简介

ONNXRuntime是微软推出的一款推理框架,用户可以非常便利的用其运行一个onnx模型。ONNXRuntime支持多种运行后端包括CPU,GPU,TensorRT,DML等。可以说ONNXRuntime是对ONNX模型最原生的支持。

虽然大家用ONNX时更多的是作为一个中间表示,从pytorch转到onnx后直接喂到TensorRT或MNN等各种后端框架,但这并不能否认ONNXRuntime是一款非常优秀的推理框架。而且由于其自身只包含推理功能(最新的ONNXRuntime甚至已经可以训练),通过阅读其源码可以解深度学习框架的一些核心功能原理(op注册,内存管理,运行逻辑等)
总体来看,整个ONNXRuntime的运行可以分为三个阶段,Session构造,模型加载与初始化和运行。和其他所有主流框架相同,ONNXRuntime最常用的语言是python,而实际负责执行框架运行的则是C++。

2.3 安装

pip install openvino -i  https://pypi.tuna.tsinghua.edu.cn/simple
pip install onnxruntime -i  https://pypi.tuna.tsinghua.edu.cn/simple

3 YOLOv5介绍

YOLOv5详解
Github:https://github.com/ultralytics/yolov5

4 基于Openvino和ONNXRuntime推理

下面代码整个处理过程主要包括:预处理—>推理—>后处理—>画图。
假设图像resize为640×640,
前处理输出结果维度:(1, 3, 640, 640);
推理输出结果维度:(1, 8400, 85),其中85表示4个box坐标信息+置信度分数+80个类别概率,8400表示80×80+40×40+20×20,不同于v8与v9采用类别里面最大的概率作为置信度score;
后处理输出结果维度:(5, 6),其中第一个5表示图bus.jpg检出5个目标,第二个维度6表示(x1, y1, x2, y2, conf, cls)。
注:与YOLOv6输出维度一致,可通用!!!

4.1 全部代码

import argparse
import time 
import cv2
import numpy as np
from openvino.runtime import Core  # pip install openvino -i  https://pypi.tuna.tsinghua.edu.cn/simple
import onnxruntime as ort  # 使用onnxruntime推理用上,pip install onnxruntime,默认安装CPU


# COCO默认的80类
CLASSES = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
            'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
              'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
                'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
                  'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich',
                    'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',
                      'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven',
                        'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']


class OpenvinoInference(object):
    def __init__(self, onnx_path):
        self.onnx_path = onnx_path
        ie = Core()
        self.model_onnx = ie.read_model(model=self.onnx_path)
        self.compiled_model_onnx = ie.compile_model(model=self.model_onnx, device_name="CPU")
        self.output_layer_onnx = self.compiled_model_onnx.output(0)

    def predirts(self, datas):
        predict_data = self.compiled_model_onnx([datas])[self.output_layer_onnx]
        return predict_data

class YOLOv5:
    """YOLOv5 object detection model class for handling inference and visualization."""

    def __init__(self, onnx_model, imgsz=(640, 640), infer_tool='openvino'):
        """
        Initialization.

        Args:
            onnx_model (str): Path to the ONNX model.
        """
        self.infer_tool = infer_tool
        if self.infer_tool == 'openvino':
            # 构建openvino推理引擎
            self.openvino = OpenvinoInference(onnx_model)
            self.ndtype = np.single
        else:
            # 构建onnxruntime推理引擎
            self.ort_session = ort.InferenceSession(onnx_model,
                                                providers=['CUDAExecutionProvider', 'CPUExecutionProvider']
                                                if ort.get_device() == 'GPU' else ['CPUExecutionProvider'])

            # Numpy dtype: support both FP32 and FP16 onnx model
            self.ndtype = np.half if self.ort_session.get_inputs()[0].type == 'tensor(float16)' else np.single
       
        self.classes = CLASSES  # 加载模型类别
        self.model_height, self.model_width = imgsz[0], imgsz[1]  # 图像resize大小
        self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))  # 为每个类别生成调色板

    def __call__(self, im0, conf_threshold=0.4, iou_threshold=0.45):
        """
        The whole pipeline: pre-process -> inference -> post-process.

        Args:
            im0 (Numpy.ndarray): original input image.
            conf_threshold (float): confidence threshold for filtering predictions.
            iou_threshold (float): iou threshold for NMS.

        Returns:
            boxes (List): list of bounding boxes.
        """
        # 前处理Pre-process
        t1 = time.time()
        im, ratio, (pad_w, pad_h) = self.preprocess(im0)
        print('预处理时间:{:.3f}s'.format(time.time() - t1))
        
        # 推理 inference
        t2 = time.time()
        if self.infer_tool == 'openvino':
            preds = self.openvino.predirts(im)
        else:
            preds = self.ort_session.run(None, {self.ort_session.get_inputs()[0].name: im})[0]
        print('推理时间:{:.2f}s'.format(time.time() - t2))

        # 后处理Post-process
        t3 = time.time()
        boxes = self.postprocess(preds,
                                im0=im0,
                                ratio=ratio,
                                pad_w=pad_w,
                                pad_h=pad_h,
                                conf_threshold=conf_threshold,
                                iou_threshold=iou_threshold,
                                )
        print('后处理时间:{:.3f}s'.format(time.time() - t3))

        return boxes
        
    # 前处理,包括:resize, pad, HWC to CHW,BGR to RGB,归一化,增加维度CHW -> BCHW
    def preprocess(self, img):
        """
        Pre-processes the input image.

        Args:
            img (Numpy.ndarray): image about to be processed.

        Returns:
            img_process (Numpy.ndarray): image preprocessed for inference.
            ratio (tuple): width, height ratios in letterbox.
            pad_w (float): width padding in letterbox.
            pad_h (float): height padding in letterbox.
        """
        # Resize and pad input image using letterbox() (Borrowed from Ultralytics)
        shape = img.shape[:2]  # original image shape
        new_shape = (self.model_height, self.model_width)
        r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
        ratio = r, r
        new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
        pad_w, pad_h = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2  # wh padding
        if shape[::-1] != new_unpad:  # resize
            img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
        top, bottom = int(round(pad_h - 0.1)), int(round(pad_h + 0.1))
        left, right = int(round(pad_w - 0.1)), int(round(pad_w + 0.1))
        img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))  # 填充

        # Transforms: HWC to CHW -> BGR to RGB -> div(255) -> contiguous -> add axis(optional)
        img = np.ascontiguousarray(np.einsum('HWC->CHW', img)[::-1], dtype=self.ndtype) / 255.0
        img_process = img[None] if len(img.shape) == 3 else img
        return img_process, ratio, (pad_w, pad_h)
    
    # 后处理,包括:阈值过滤与NMS
    def postprocess(self, preds, im0, ratio, pad_w, pad_h, conf_threshold, iou_threshold):
        """
        Post-process the prediction.

        Args:
            preds (Numpy.ndarray): predictions come from ort.session.run().
            im0 (Numpy.ndarray): [h, w, c] original input image.
            ratio (tuple): width, height ratios in letterbox.
            pad_w (float): width padding in letterbox.
            pad_h (float): height padding in letterbox.
            conf_threshold (float): conf threshold.
            iou_threshold (float): iou threshold.

        Returns:
            boxes (List): list of bounding boxes.
        """
        # (Batch_size, Num_anchors, xywh_score_conf_cls), v5和v6_1.0的[..., 4]是置信度分数,v8v9采用类别里面最大的概率作为置信度score
        x = preds  # outputs: predictions (1, 8400, 85)
        
        # Predictions filtering by conf-threshold
        x = x[x[..., 4] > conf_threshold]

        # Create a new matrix which merge these(box, score, cls) into one
        # For more details about `numpy.c_()`: https://numpy.org/doc/1.26/reference/generated/numpy.c_.html
        x = np.c_[x[..., :4], x[..., 4], np.argmax(x[..., 5:], axis=-1)]

        # NMS filtering
        # 经过NMS后的值, np.array([[x, y, w, h, conf, cls], ...]), shape=(-1, 4 + 1 + 1)
        x = x[cv2.dnn.NMSBoxes(x[:, :4], x[:, 4], conf_threshold, iou_threshold)]
       
        # 重新缩放边界框,为画图做准备
        if len(x) > 0:
            # Bounding boxes format change: cxcywh -> xyxy
            x[..., [0, 1]] -= x[..., [2, 3]] / 2
            x[..., [2, 3]] += x[..., [0, 1]]

            # Rescales bounding boxes from model shape(model_height, model_width) to the shape of original image
            x[..., :4] -= [pad_w, pad_h, pad_w, pad_h]
            x[..., :4] /= min(ratio)

            # Bounding boxes boundary clamp
            x[..., [0, 2]] = x[:, [0, 2]].clip(0, im0.shape[1])
            x[..., [1, 3]] = x[:, [1, 3]].clip(0, im0.shape[0])

            return x[..., :6]  # boxes
        else:
            return []

    # 绘框
    def draw_and_visualize(self, im, bboxes, vis=False, save=True):
        """
        Draw and visualize results.

        Args:
            im (np.ndarray): original image, shape [h, w, c].
            bboxes (numpy.ndarray): [n, 6], n is number of bboxes.
            vis (bool): imshow using OpenCV.
            save (bool): save image annotated.

        Returns:
            None
        """
        # Draw rectangles 
        for (*box, conf, cls_) in bboxes:
            # draw bbox rectangle
            cv2.rectangle(im, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])),
                          self.color_palette[int(cls_)], 1, cv2.LINE_AA)
            cv2.putText(im, f'{self.classes[int(cls_)]}: {conf:.3f}', (int(box[0]), int(box[1] - 9)),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.7, self.color_palette[int(cls_)], 2, cv2.LINE_AA)
    
        # Show image
        if vis:
            cv2.imshow('demo', im)
            cv2.waitKey(0)
            cv2.destroyAllWindows()

        # Save image
        if save:
            cv2.imwrite('demo.jpg', im)


if __name__ == '__main__':
    # Create an argument parser to handle command-line arguments
    parser = argparse.ArgumentParser()
    parser.add_argument('--model', type=str, default='yolov5s.onnx', help='Path to ONNX model')
    parser.add_argument('--source', type=str, default=str('bus.jpg'), help='Path to input image')
    parser.add_argument('--imgsz', type=tuple, default=(640, 640), help='Image input size')
    parser.add_argument('--conf', type=float, default=0.25, help='Confidence threshold')
    parser.add_argument('--iou', type=float, default=0.45, help='NMS IoU threshold')
    parser.add_argument('--infer_tool', type=str, default='openvino', choices=("openvino", "onnxruntime"), help='选择推理引擎')
    args = parser.parse_args()

    # Build model
    model = YOLOv5(args.model, args.imgsz, args.infer_tool)

    # Read image by OpenCV
    img = cv2.imread(args.source)

    # Inference
    boxes = model(img, conf_threshold=args.conf, iou_threshold=args.iou)

    # Visualize
    if len(boxes) > 0:
        model.draw_and_visualize(img, boxes, vis=False, save=True)

4.2 结果

在这里插入图片描述

具体时间消耗:

预处理时间:0.005s(包含Pad)
推理时间:0.04~0.05s(Openvino)
推理时间:0.08~0.09s(ONNXRuntime)
后处理时间:0.001s
注:640×640下。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/428251.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[Redis]——RedisTemplate的两种序列化方式

目录 1. RedisTemplate 2. StringRedisTemplate 方案一: 自定义RedisTemplate修改RedisTemplate的序列化器写入数据时自动序列化 方案二: 使用StringRedisTemplate手动序列化手动反序列化 1. RedisTemplate 编写的java代码 Testvoid contextLoads2…

Redis 淘汰策略、持久化、高可用

淘汰策略 只有 redis 内存空间已满并且往里面写新数据,才会触发淘汰策略。通过 expire / / /pexpire 让 key-value 过期,从而让 redis 清除这个 key-value。value 的数据结构typedef struct redisObject {unsigned tpye:4;unsigned encoding:4;// 判断哪…

10个软件测试的吐槽点!

问题一:测试时间评估 这是一个工作日常经常需要回复的问题,理论上,测试这边要做出较科学合理的回复,那就要将【需求变更】、【开发进度延误】、【bug 修复不稳定】、【复杂业务流程】、【测试环境不稳定】、【上下游服务依赖】、…

LaTeX文档中文显示错误解决办法

LaTeX文档中文显示错误解决办法 如果在LaTeX文档中遇到中文显示错误,通常是因为文档没有正确配置以支持中文。解决这个问题的一个常见方法是使用XeLaTeX引擎编译文档,它天然支持UTF-8编码,可以很好地处理中文。同时,使用ctex宏包…

Vue3中使用ffmpeg.wasm进行转码

一、安装方法 1.1 使用yarn进行安装 yarn add ffmpeg/ffmpeg ffmpeg/core1.2 安装版本 注意安装版本需在0.12.0以上版本才可以使用下面代码(目前更新到0.12.10),之前的版本代码使用方法有所不同(0.12.10之后的版本也可能会有变动…

链表相加(二)

题目 题目链接 链表相加(二)_牛客题霸_牛客网 题目描述 代码实现 class Solution { public:/*** 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可** * param head1 ListNode类 * param head2 ListNode类 * return ListNode…

4G/5G执法记录仪、智能安全帽走国标GB28181接入海康、宇视等大平台,也可走平台与平台对接,以下级平台级联到上级大平台

AIoT万物智联,智能安全帽生产厂家,执法记录仪生产厂家,智能安全帽、智能头盔、头盔记录仪、执法记录仪、智能视频分析/边缘计算AI盒子、车载DVR/NVR、布控球、智能眼镜、智能手电、无人机4G补传系统等统一接入大型融合通信可视指挥调度平台VM…

【算法分析与设计】被围绕的区域

📝个人主页:五敷有你 🔥系列专栏:算法分析与设计 ⛺️稳中求进,晒太阳 题目 给你一个 m x n 的矩阵 board ,由若干字符 X 和 O ,找到所有被 X 围绕的区域,并将这些区域里所有…

告别手动填写邀请码,这款App数据统计工具帮你轻松实现

在移动互联网时代,App的推广和运营已成为各大企业的必修课。然而,面对错综复杂的推广渠道和浩如烟海的数据,如何精准地追踪用户来源、优化推广策略,一直是困扰着运营者的难题。今天,我们就来聊聊一款能够帮助你轻松解决…

『Linux从入门到精通』第 ㉓ 期 - 管道

文章目录 💐专栏导读💐文章导读🐧进程间通信的目的🐧如何进行进程间通信🐧进程间通信的分类🐧管道🐦什么是管道🐦管道原理 🐧实例代码🐧管道的特点&#x1f4…

如何扫码查看图片信息?图片放到二维码展示的在线教学

现在通过扫码来查看物品图片是很常用的一种方式,将物品不同角度的图片存入一张二维码后,用户只需要扫描这张二维码图片,就可以了解物品预览图及其他信息。常用的图片格式比如jpg、png、gif都可以放到二维码中显示,那么具体该怎么做…

FreeCAD|建模常用命令

import FreeCAD as App import Part 1、创建点 V1 App.Vector(0, 10, 0) 2、创建线段 L1 Part.LineSegment(V1, V2) 3、创建圆弧 C1 Part.Arc(V1, VC1, V4) 4、创建Shape S1 Part.Shape([C1, L1, C2, L2]) 5、创建基本形状 makeBox(l, w, h, [p, d]) makeCircl…

C语言:qsort的使用方法

目录 1. qsort是什么? 2. 为什么要使用qsort 3. qsort的使用 3.1 qsort的返回值和参数 3.2 qsort的compare函数参数 3.3 int类型数组的qsort完整代码 4. qsort完整代码 1. qsort是什么? qsort中的q在英语中是quick,快速的意思了&#…

LeetCode_Java_动态规划系列(3)(题目+思路+代码)

338.比特位计数 给你一个整数 n &#xff0c;对于 0 < i < n 中的每个 i &#xff0c;计算其二进制表示中 1 的个数 &#xff0c;返回一个长度为 n 1 的数组 ans 作为答案。 class Solution {public int[] countBits(int n) {/** 思路&#xff1a;* 1.创建一个长度为 n…

智慧市容环境卫生管理信息系统建设项目初步设计参考指南

第四章项目建设方案 梳理和编制数据标准规范&#xff0c;为数据体系建设提供建设指导。数据标准规范体系是根据统一市容环卫基础数据资源建立的&#xff0c;从要素分类、编码、符号、制图、更新机制等层 面解决各类规划标准不衔接、各自为政问题。标准规范体系包括&#xff1…

回溯难题(算法村第十八关黄金挑战)

复原 IP 地址 93. 复原 IP 地址 - 力扣&#xff08;LeetCode&#xff09; 有效 IP 地址 正好由四个整数&#xff08;每个整数位于 0 到 255 之间组成&#xff0c;且不能含有前导 0&#xff09;&#xff0c;整数之间用 . 分隔。 例如&#xff1a;"0.1.2.201" 和 &q…

【计算机毕业设计】044学生管理系统

&#x1f64a;作者简介&#xff1a;拥有多年开发工作经验&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。&#x1f339;赠送计算机毕业设计600个选题excel文件&#xff0c;帮助大学选题。赠送开题报告模板&#xff…

数据结构——算法与算法分析3,4

目录 1.分析算法时间复杂度的方法 举例&#xff1a; 1.数据集队时间复杂度的影响 2.空间复杂度 3.设计好算法的过程 1.分析算法时间复杂度的方法 举例&#xff1a; 1.数据集队时间复杂度的影响 一般只考虑最坏时间复杂度和平均时间复杂度 2.空间复杂度 3.设计好算法的过程…

【Android 内存优化】怎么理解Android PLT hook?

文章目录 前言什么是hook?PLT hook作用基本原理PLT hook 总体步骤 代码案例分析方案预研面临的问题怎么做&#xff1f;ELFELF 文件头SHT&#xff08;section header table&#xff09; 链接视图&#xff08;Linking View&#xff09;和执行视图&#xff08;Execution View&…

Vue使用高德地图定位到当前位置,并显示天气信息

首先得去高德控制台申请两个 key&#xff0c;一个天气key和一个定位key 获取天气信息的函数&#xff1a; const getWeather function (city) {// 使用 fetch 发送请求获取天气信息fetch(https://restapi.amap.com/v3/weather/weatherInfo?city${city}&keyeefd36557b0250…