前沿技术对比:大模型技术为什么发展远快于区块链技术,中英对照解释

文章目录

  • 前言
  • 1、技术复杂性与成熟度 / Technical Complexity and Maturity
  • 2.、应用场景与行业需求 / Application Scenarios and Industry Demand
  • 3、监管与法律问题 / Regulatory and Legal Issues
  • 4、去中心化与网络效应 / Decentralization and Network Effects
  • 5、能源消耗与资源约束 / Energy Consumption and Resource Constraints

前言

亲爱的家人们,创作很不容易,若对您有帮助的话,请点赞收藏加关注哦,您的关注是我持续创作的动力,谢谢大家!有问题请私信或联系邮箱:fn_kobe@163.com

This bilingual explanation compares the current development status, challenges, and applications of LLMs and blockchain technologies, discussing their unique characteristics, development pace, and the issues they face in terms of regulation, energy consumption, and decentralized nature.

1、技术复杂性与成熟度 / Technical Complexity and Maturity

①LLM(大语言模型):大语言模型依赖于深度学习技术,尤其是Transformer架构,这些技术已经相对成熟且获得了广泛的支持。随着计算能力的提高(如GPU、TPU等硬件加速)、大规模数据集的可用性、以及优化的模型架构,LLM能够在短时间内进行大规模训练,并在多种应用场景中取得令人瞩目的成果。因此,LLM技术相对较为快速地进步。
LLM (Large Language Models): LLMs rely on deep learning techniques, especially the Transformer architecture, which have matured and gained widespread support. With improvements in computational power (such as GPU and TPU hardware acceleration), the availability of large-scale datasets, and optimized model architectures, LLMs can be trained on a massive scale in a short time and achieve impressive results across various application scenarios. Thus, LLM technology has progressed relatively quickly.

②区块链:区块链技术从最初的比特币到现在的多种区块链平台,技术上经历了多个迭代,但与LLM相比,它面临着更多复杂的问题。共识机制(如工作量证明、权益证明等)、网络扩展性、能效问题以及安全性等,都使得区块链技术在实际应用中面临较大的挑战。例如,比特币和以太坊等区块链系统,特别是基于**工作量证明(PoW)**的区块链,不仅能效低,而且在交易速度和吞吐量上存在瓶颈,这限制了区块链技术的广泛应用。
Blockchain: Blockchain technology has evolved from Bitcoin to various other platforms, with several iterations. However, compared to LLMs, it faces more complex challenges. Consensus mechanisms (such as Proof of Work, Proof of Stake), network scalability, energy efficiency, and security are key issues that hinder blockchain’s practical application. For instance, blockchain systems like Bitcoin and Ethereum, especially those based on Proof of Work (PoW), not only have low energy efficiency but also face bottlenecks in transaction speed and throughput, limiting their widespread adoption.

2.、应用场景与行业需求 / Application Scenarios and Industry Demand

①LLM:大语言模型的应用场景非常广泛,几乎涵盖了所有需要语言理解和生成的领域。比如:自动化客户服务、内容生成、情感分析、翻译、医疗诊断、法律文书分析等。大语言模型的使用门槛相对较低,用户只需要通过简单的文本输入(如自然语言查询)就能获得结果。由于这些技术可以直接转化为商业应用,因此受到了企业和开发者的热烈追捧,进而推动了LLM的快速发展。
LLM: Large language models have a wide range of applications, covering almost all areas requiring language understanding and generation, such as automated customer service, content creation, sentiment analysis, translation, medical diagnosis, and legal document analysis. The entry barrier for using LLMs is relatively low, as users only need to input simple text (e.g., natural language queries) to get results. Since these technologies can be directly translated into commercial applications, they have garnered significant attention from enterprises and developers, further accelerating the development of LLMs.

②区块链:区块链的应用虽有巨大潜力,但目前主要集中在加密货币(如比特币、以太坊)和去中心化金融(DeFi)等领域。虽然区块链技术的去中心化和透明性特点在金融、供应链、物联网、医疗健康等领域有着广泛的应用前景,但很多实际应用仍处于起步阶段,尤其是在金融监管、跨链互操作性和技术集成方面。比如,去中心化的金融服务、智能合约等技术,在很多国家和地区还面临较为严格的监管政策,限制了其发展速度。
Blockchain: Blockchain has immense potential, but its current applications are mainly concentrated in areas like cryptocurrency (e.g., Bitcoin, Ethereum) and decentralized finance (DeFi). Although the decentralized and transparent nature of blockchain has vast application prospects in fields like finance, supply chains, IoT, and healthcare, many real-world applications are still in their infancy, especially in areas like financial regulation, cross-chain interoperability, and technical integration. For instance, decentralized financial services and smart contracts face stringent regulatory policies in many countries, limiting their growth rate.

3、监管与法律问题 / Regulatory and Legal Issues

①LLM:LLM的应用,尤其是在数据隐私和伦理方面,虽然有一定的挑战,但相对较少受到严格的监管。尽管存在对生成内容的安全性、偏见问题以及隐私侵犯的担忧,AI技术的快速应用推动了相关法律和政策的逐步完善。目前,各国政府正在制定关于人工智能的监管政策,但总体来说,AI的发展更多依赖于行业自律和企业责任。
LLM: The use of LLMs, particularly in terms of data privacy and ethics, presents some challenges, but is subject to relatively less stringent regulation. Although there are concerns regarding the safety of generated content, bias issues, and privacy violations, the rapid application of AI technology has led to gradual improvements in relevant laws and policies. Currently, governments worldwide are working on AI regulatory frameworks, but overall, AI development relies more on industry self-regulation and corporate responsibility.

②区块链:区块链尤其是加密货币的应用,面临着高度监管的挑战。由于去中心化和匿名性特征,区块链技术常被关联到洗钱、逃税、非法交易等问题。各国政府和金融机构对加密货币的监管政策各不相同,有些国家(如中国)甚至直接禁止加密货币的交易。这些监管不确定性使得区块链技术的推广受到阻碍,需要更多的时间和实践来达成全球共识并明确合法合规的应用路径。
Blockchain: Blockchain, particularly in the case of cryptocurrencies, faces significant regulatory challenges. Due to its decentralized and anonymous nature, blockchain is often associated with issues like money laundering, tax evasion, and illegal transactions. Regulatory policies for cryptocurrencies vary widely across countries, with some nations (e.g., China) even banning cryptocurrency trading. This regulatory uncertainty hampers the widespread adoption of blockchain technology, requiring more time and effort to reach global consensus and clarify legal and compliant application paths.

4、去中心化与网络效应 / Decentralization and Network Effects

①LLM:LLM的开发通常由少数几家大型企业(如OpenAI、Google、Meta等)主导,这些企业有充足的资金、技术积累和计算资源来加速模型的研发。这种集中化的开发模式使得LLM能够快速优化和迭代,并且可以依托这些大型公司强大的基础设施来进行大规模应用。大语言模型通过云服务API对外提供,用户只需要简单接入即可使用,降低了使用门槛。
LLM: The development of LLMs is usually led by a few large companies (e.g., OpenAI, Google, Meta), which have sufficient funds, technological expertise, and computational resources to accelerate model development. This centralized development model allows LLMs to be optimized and iterated quickly, benefiting from the powerful infrastructure of these large companies to enable large-scale deployment. LLMs are offered through cloud service APIs, allowing users to access them easily, which lowers the entry barrier.

②区块链:区块链的最大特点是去中心化,这种去中心化的性质使得区块链的发展不受单一组织的控制,而是依赖于社区共识和开源协议的演化。每个参与者(如节点、矿工、开发者)都需要在网络中达成一致意见,进行协议更新和网络升级。这种分散化的性质导致区块链系统的升级速度较慢,且容易出现分叉(例如比特币与比特币现金的分叉),从而影响技术的统一性和发展速度。
Blockchain: The key characteristic of blockchain is decentralization, which means that its development is not controlled by a single organization but relies on community consensus and the evolution of open protocols. Each participant (e.g., nodes, miners, developers) must reach consensus within the network to update protocols and upgrade the network. This decentralized nature results in slower system upgrades for blockchain and can lead to forks (e.g., Bitcoin and Bitcoin Cash), which affects the uniformity and speed of technological development.

5、能源消耗与资源约束 / Energy Consumption and Resource Constraints

①LLM:训练大语言模型需要大量的计算资源,尤其是对于像GPT-4这样的大规模模型,但大多数训练任务在集中的数据中心进行,能够利用最新的硬件加速器(如GPU和TPU)和高效的计算资源管理,允许模型的训练相对快速。然而,训练大模型的能源消耗问题依然存在,需要通过更高效的算法、硬件优化以及能效改进来进一步降低消耗。
LLM: Training large language models requires significant computational resources, especially for large-scale models like GPT-4. However, most training tasks are conducted in centralized data centers, utilizing the latest hardware accelerators (e.g., GPUs and TPUs) and efficient resource management, enabling relatively quick model training. Nevertheless, the energy consumption of training large models remains an issue, which requires further improvements in algorithms, hardware optimization, and energy efficiency to reduce consumption.

②区块链:区块链技术特别是基于工作量证明(PoW)的区块链,其能效问题极为突出。例如,比特币的挖矿过程需要消耗大量电力。尽管存在一些改进措施(如采用权益证明(PoS)或混合共识机制等),但整体来看,区块链的能源消耗问题仍然制约着其大规模应用,尤其是在全球能源资源紧张的背景下,这成为区块链技术发展的一大障碍。
Blockchain: Blockchain technology, particularly those based on Proof of Work (PoW), faces significant energy efficiency challenges. For instance, Bitcoin mining consumes vast amounts of electricity. Although improvements such as adopting Proof of Stake (PoS) or hybrid consensus mechanisms exist, the overall energy consumption issue still restricts widespread blockchain adoption, especially in the context of global energy resource constraints, making it a major obstacle for blockchain technology development.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/957766.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Titans: 学习在测试时记忆 - 论文解读与总结

论文地址:https://arxiv.org/pdf/2501.00663v1 本文介绍了一篇由 Google Research 发表的关于新型神经网络架构 Titans 的论文,该架构旨在解决传统 Transformer 在处理长序列时的局限性。以下是对论文的详细解读,并结合原文图片进行说明&…

账号IP属地:依据手机号还是网络环境?

在数字化生活中,账号的IP属地信息往往成为我们关注的一个焦点。无论是出于安全考虑,还是为了满足某些特定服务的需求,了解账号IP属地的确定方式都显得尤为重要。那么,账号IP属地根据手机号还是网络来确定的呢?本文将深…

微信小程序实现自定义日历功能

文章目录 1. 创建日历组件实现步骤:2. 代码实现过程3. 实现效果图4. 关于作者其它项目视频教程介绍 1. 创建日历组件实现步骤: 创建日历组件:首先,你需要创建一个日历组件,包含显示日期的逻辑。样式设计:为…

YOLOv9改进,YOLOv9检测头融合RFAConv卷积,适合目标检测、分割任务

摘要 空间注意力已广泛应用于提升卷积神经网络(CNN)的性能,但它存在一定的局限性。作者提出了一个新的视角,认为空间注意力机制本质上解决了卷积核参数共享的问题。然而,空间注意力生成的注意力图信息对于大尺寸卷积核来说是不足够的。因此,提出了一种新型的注意力机制—…

【机器学习】深入无监督学习分裂型层次聚类的原理、算法结构与数学基础全方位解读,深度揭示其如何在数据空间中构建层次化聚类结构

🌟个人主页:落叶 🌟当前专栏: 机器学习专栏 目录 引言 分裂型层次聚类(Divisive Hierarchical Clustering) 1. 基本原理 2. 分裂型层次聚类的算法步骤 Step 1: 初始化 Step 2: 选择分裂的簇 Step 3: 执行分裂操作…

VirtualBox can‘t enable the AMD-V extension

个人博客地址:VirtualBox cant enable the AMD-V extension | 一张假钞的真实世界 最近一次完成Deepin的系统更新后,进入VirtualBox创建的虚拟机(Widows10)时,出现以下错误: 根据网址“https://askubuntu.…

[JavaScript] 数组与对象详解

文章目录 数组(Array)什么是数组数组的常用操作**访问数组元素****修改数组元素****数组的长度****添加和删除元素** 常用数组方法map():filter():reduce():**其他实用方法** 对象(Object)什么是对象对象的基本操作**访问属性****…

“模板”格式化发布新创诗(为《诗意 2 0 2 5》贡献力量)

预置MarkDown&Html文本,脚本读取f-string模板完成录入嵌套。 (笔记模板由python脚本于2025-01-22 19:19:58创建,本篇笔记适合喜欢分享的达人的coder翻阅) 【学习的细节是欢悦的历程】 博客的核心价值:在于输出思考与经验,而不…

论文速读|Multi-Modal Disordered Representation Learning Network for TBPS.AAAI24

论文地址:Multi-Modal Disordered Representation Learning Network for Description-Based Person Search 代码地址:未开源(2025.01.22) bib引用: inproceedings{yang2024multi,title{Multi-Modal Disordered Repres…

计算机视觉算法实战——实体物体跟踪

✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连✨ ​ ​​​​​​​ ​ 1. 领域介绍✨✨ 实体物体跟踪(Object Tracking)是计算机视觉领域中的一个重要研究方向&#x…

C++17 新特性深入解析:constexpr 扩展、if constexpr 和 constexpr lambda

C17 不仅增强了现有特性,还引入了一些全新的编程工具,极大地提升了代码的效率和表达力。在这篇文章中,我们将深入探讨 C17 中与 constexpr 相关的三个重要特性:constexpr 的扩展用法、if constexpr 和 constexpr lambda。这些特性…

IVR:交互式语音应答系统解析及其应用

引言 IVR(Interactive Voice Response),即交互式语音应答系统,是一种功能强大的电话自动服务系统。它通过语音识别和按键反馈,使用户与系统之间实现实时交互,为用户提供自助服务、咨询、报告、投诉等多种功…

Observability:最大化可观察性 AI 助手体验的 5 大提示(prompts)

作者:来自 Elastic Zoia_AUBRY 在过去三年担任客户工程师期间,我遇到了数百名客户,他们最常问的问题之一是:“我的数据在 Elastic 中;我该如何利用它获得最大优势?”。 如果这适用于你,那么本…

【Vim Masterclass 笔记25】S10L45:Vim 多窗口的常用操作方法及相关注意事项

文章目录 S10L45 Working with Multiple Windows1 水平分割窗口2 在水平分割的新窗口中显示其它文件内容3 垂直分割窗口4 窗口的关闭5 在同一窗口水平拆分出多个窗口6 关闭其余窗口7 让四个文件呈田字形排列8 光标在多窗口中的定位9 调节子窗口的尺寸大小10 变换子窗口的位置11…

STM32_SD卡的SDIO通信_基础读写

本篇将使用CubeMXKeil, 创建一个SD卡读写的工程。 目录 一、SD卡要点速读 二、SDIO要点速读 三、SD卡座接线原理图 四、CubeMX新建工程 五、CubeMX 生成 SD卡的SDIO通信部分 六、Keil 编辑工程代码 七、实验效果 一、SD卡 速读 SD卡,全称Secure Digital M…

大模型GUI系列论文阅读 DAY2续:《一个具备规划、长上下文理解和程序合成能力的真实世界Web代理》

摘要 预训练的大语言模型(LLMs)近年来在自主网页自动化方面实现了更好的泛化能力和样本效率。然而,在真实世界的网站上,其性能仍然受到以下问题的影响:(1) 开放领域的复杂性,(2) 有限的上下文长度&#xff…

【ESP32】ESP32连接JY61P并通过WIFI发送给电脑

前言 手头上有个ESP32&#xff0c;发现有wifi功能&#xff0c;希望连接JY61P并通过WIFI把姿态数据发送给电脑 1.采用Arduino IDE编译器&#xff1b;需要安装ESP32的开发板管理器&#xff1b; 2.电脑接受数据是基于python的&#xff1b; 1. ESP32 连接手机WIFI #include <…

C语言程序设计十大排序—冒泡排序

文章目录 1.概念✅2.冒泡排序&#x1f388;3.代码实现✅3.1 直接写✨3.2 函数✨ 4.总结✅ 1.概念✅ 排序是数据处理的基本操作之一&#xff0c;每次算法竞赛都很多题目用到排序。排序算法是计算机科学中基础且常用的算法&#xff0c;排序后的数据更易于处理和查找。在计算机发展…

【Elasticsearch】腾讯云安装Elasticsearch

Elasticsearch 认识Elasticsearch安装Elasticsearch安装Kibana安装IK分词器分词器的作用是什么&#xff1f;IK分词器有几种模式&#xff1f;IK分词器如何拓展词条&#xff1f;如何停用词条&#xff1f; 认识Elasticsearch Elasticsearch的官方网站如下 Elasticsearch官网 Ela…

Django学习笔记(安装和环境配置)-01

Django学习笔记(安装和环境配置)-01 一、创建python环境 1、可以通过安装Anaconda来创建一个python环境 # 创建一个虚拟python环境 conda create -n django python3.8 # 切换激活到创建的环境中 activate django2、安装django # 进入虚拟环境中安装django框架 pip install …