观察者模式 - 观察者模式的应用场景

引言

观察者模式(Observer Pattern)是设计模式中行为型模式的一种,它定义了对象之间的一对多依赖关系,使得当一个对象的状态发生改变时,所有依赖于它的对象都会自动收到通知并更新。观察者模式广泛应用于事件处理系统、GUI框架、消息队列等场景中。

本文将详细介绍观察者模式的概念、实现方式以及在C++中的应用场景。

观察者模式的概念

定义

观察者模式定义了一种一对多的依赖关系,让多个观察者对象同时监听某一个主题对象。当主题对象的状态发生变化时,所有依赖于它的观察者对象都会收到通知并自动更新。

角色

观察者模式主要包含以下角色:

  1. Subject(主题):主题是被观察的对象,它维护一个观察者列表,并提供添加、删除和通知观察者的方法。
  2. Observer(观察者):观察者是依赖于主题的对象,它定义了一个更新接口,用于在主题状态改变时接收通知。
  3. ConcreteSubject(具体主题):具体主题是主题的具体实现,它维护一个状态,并在状态改变时通知所有观察者。
  4. ConcreteObserver(具体观察者):具体观察者是观察者的具体实现,它实现更新接口以响应主题的状态变化。

优点

  1. 解耦:观察者模式将观察者和主题解耦,使得它们可以独立变化。
  2. 灵活性:可以动态地添加或删除观察者,而不影响主题或其他观察者。
  3. 一致性:确保所有观察者在主题状态改变时都能及时更新。

缺点

  1. 性能问题:如果观察者数量过多,通知所有观察者可能会导致性能问题。
  2. 循环依赖:如果观察者和主题之间存在循环依赖,可能会导致系统复杂性增加。

观察者模式的实现

下面是一个简单的观察者模式的实现示例:

#include <iostream>
#include <vector>
#include <algorithm>

// 前向声明
class Observer;

// 主题接口
class Subject {
public:
    virtual ~Subject() {}
    virtual void attach(Observer* observer) = 0;
    virtual void detach(Observer* observer) = 0;
    virtual void notify() = 0;
};

// 观察者接口
class Observer {
public:
    virtual ~Observer() {}
    virtual void update(int state) = 0;
};

// 具体主题
class ConcreteSubject : public Subject {
private:
    std::vector<Observer*> observers;
    int state;

public:
    void attach(Observer* observer) override {
        observers.push_back(observer);
    }

    void detach(Observer* observer) override {
        observers.erase(std::remove(observers.begin(), observers.end(), observer), observers.end());
    }

    void notify() override {
        for (Observer* observer : observers) {
            observer->update(state);
        }
    }

    void setState(int state) {
        this->state = state;
        notify();
    }

    int getState() const {
        return state;
    }
};

// 具体观察者
class ConcreteObserver : public Observer {
private:
    int observerState;
    ConcreteSubject* subject;

public:
    ConcreteObserver(ConcreteSubject* subject) : subject(subject) {
        subject->attach(this);
    }

    ~ConcreteObserver() {
        subject->detach(this);
    }

    void update(int state) override {
        observerState = state;
        std::cout << "Observer updated with state: " << observerState << std::endl;
    }
};

int main() {
    ConcreteSubject subject;
    ConcreteObserver observer1(&subject);
    ConcreteObserver observer2(&subject);

    subject.setState(10);
    subject.setState(20);

    return 0;
}

代码解析

  1. Subject接口:定义了attachdetachnotify方法,用于管理观察者列表并通知观察者。
  2. Observer接口:定义了update方法,用于在主题状态改变时接收通知。
  3. ConcreteSubject类:实现了Subject接口,维护一个观察者列表,并在状态改变时通知所有观察者。
  4. ConcreteObserver类:实现了Observer接口,并在update方法中更新自己的状态。

观察者模式的应用场景

观察者模式适用于以下场景:

  1. 事件处理系统:在事件驱动系统中,观察者模式可以用于处理事件的发生和传播。例如,GUI框架中的按钮点击事件、鼠标移动事件等。
  2. 消息队列:在消息队列系统中,观察者模式可以用于通知订阅者新消息的到来。
  3. 数据同步:在分布式系统中,观察者模式可以用于保持多个节点之间的数据同步。
  4. 状态监控:在监控系统中,观察者模式可以用于监控系统状态的变化,并在状态改变时通知相关组件。

总结

观察者模式是一种非常实用的设计模式,它通过定义对象之间的一对多依赖关系,使得当一个对象的状态发生改变时,所有依赖于它的对象都会自动收到通知并更新。观察者模式广泛应用于事件处理系统、GUI框架、消息队列等场景中。

希望本文能帮助你更好地理解观察者模式的概念、实现方式以及应用场景。如果你有任何问题或建议,欢迎在评论区留言讨论。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/957764.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Titans: 学习在测试时记忆 - 论文解读与总结

论文地址&#xff1a;https://arxiv.org/pdf/2501.00663v1 本文介绍了一篇由 Google Research 发表的关于新型神经网络架构 Titans 的论文&#xff0c;该架构旨在解决传统 Transformer 在处理长序列时的局限性。以下是对论文的详细解读&#xff0c;并结合原文图片进行说明&…

账号IP属地:依据手机号还是网络环境?

在数字化生活中&#xff0c;账号的IP属地信息往往成为我们关注的一个焦点。无论是出于安全考虑&#xff0c;还是为了满足某些特定服务的需求&#xff0c;了解账号IP属地的确定方式都显得尤为重要。那么&#xff0c;账号IP属地根据手机号还是网络来确定的呢&#xff1f;本文将深…

微信小程序实现自定义日历功能

文章目录 1. 创建日历组件实现步骤&#xff1a;2. 代码实现过程3. 实现效果图4. 关于作者其它项目视频教程介绍 1. 创建日历组件实现步骤&#xff1a; 创建日历组件&#xff1a;首先&#xff0c;你需要创建一个日历组件&#xff0c;包含显示日期的逻辑。样式设计&#xff1a;为…

YOLOv9改进,YOLOv9检测头融合RFAConv卷积,适合目标检测、分割任务

摘要 空间注意力已广泛应用于提升卷积神经网络(CNN)的性能,但它存在一定的局限性。作者提出了一个新的视角,认为空间注意力机制本质上解决了卷积核参数共享的问题。然而,空间注意力生成的注意力图信息对于大尺寸卷积核来说是不足够的。因此,提出了一种新型的注意力机制—…

【机器学习】深入无监督学习分裂型层次聚类的原理、算法结构与数学基础全方位解读,深度揭示其如何在数据空间中构建层次化聚类结构

&#x1f31f;个人主页&#xff1a;落叶 &#x1f31f;当前专栏: 机器学习专栏 目录 引言 分裂型层次聚类&#xff08;Divisive Hierarchical Clustering&#xff09; 1. 基本原理 2. 分裂型层次聚类的算法步骤 Step 1: 初始化 Step 2: 选择分裂的簇 Step 3: 执行分裂操作…

VirtualBox can‘t enable the AMD-V extension

个人博客地址&#xff1a;VirtualBox cant enable the AMD-V extension | 一张假钞的真实世界 最近一次完成Deepin的系统更新后&#xff0c;进入VirtualBox创建的虚拟机&#xff08;Widows10&#xff09;时&#xff0c;出现以下错误&#xff1a; 根据网址“https://askubuntu.…

[JavaScript] 数组与对象详解

文章目录 数组&#xff08;Array&#xff09;什么是数组数组的常用操作**访问数组元素****修改数组元素****数组的长度****添加和删除元素** 常用数组方法map():filter():reduce():**其他实用方法** 对象&#xff08;Object&#xff09;什么是对象对象的基本操作**访问属性****…

“模板”格式化发布新创诗(为《诗意 2 0 2 5》贡献力量)

预置MarkDown&Html文本&#xff0c;脚本读取f-string模板完成录入嵌套。 (笔记模板由python脚本于2025-01-22 19:19:58创建&#xff0c;本篇笔记适合喜欢分享的达人的coder翻阅) 【学习的细节是欢悦的历程】 博客的核心价值&#xff1a;在于输出思考与经验&#xff0c;而不…

论文速读|Multi-Modal Disordered Representation Learning Network for TBPS.AAAI24

论文地址&#xff1a;Multi-Modal Disordered Representation Learning Network for Description-Based Person Search 代码地址&#xff1a;未开源&#xff08;2025.01.22&#xff09; bib引用&#xff1a; inproceedings{yang2024multi,title{Multi-Modal Disordered Repres…

计算机视觉算法实战——实体物体跟踪

✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连✨ ​ ​​​​​​​ ​ 1. 领域介绍✨✨ 实体物体跟踪&#xff08;Object Tracking&#xff09;是计算机视觉领域中的一个重要研究方向&#x…

C++17 新特性深入解析:constexpr 扩展、if constexpr 和 constexpr lambda

C17 不仅增强了现有特性&#xff0c;还引入了一些全新的编程工具&#xff0c;极大地提升了代码的效率和表达力。在这篇文章中&#xff0c;我们将深入探讨 C17 中与 constexpr 相关的三个重要特性&#xff1a;constexpr 的扩展用法、if constexpr 和 constexpr lambda。这些特性…

IVR:交互式语音应答系统解析及其应用

引言 IVR&#xff08;Interactive Voice Response&#xff09;&#xff0c;即交互式语音应答系统&#xff0c;是一种功能强大的电话自动服务系统。它通过语音识别和按键反馈&#xff0c;使用户与系统之间实现实时交互&#xff0c;为用户提供自助服务、咨询、报告、投诉等多种功…

Observability:最大化可观察性 AI 助手体验的 5 大提示(prompts)

作者&#xff1a;来自 Elastic Zoia_AUBRY 在过去三年担任客户工程师期间&#xff0c;我遇到了数百名客户&#xff0c;他们最常问的问题之一是&#xff1a;“我的数据在 Elastic 中&#xff1b;我该如何利用它获得最大优势&#xff1f;”。 如果这适用于你&#xff0c;那么本…

【Vim Masterclass 笔记25】S10L45:Vim 多窗口的常用操作方法及相关注意事项

文章目录 S10L45 Working with Multiple Windows1 水平分割窗口2 在水平分割的新窗口中显示其它文件内容3 垂直分割窗口4 窗口的关闭5 在同一窗口水平拆分出多个窗口6 关闭其余窗口7 让四个文件呈田字形排列8 光标在多窗口中的定位9 调节子窗口的尺寸大小10 变换子窗口的位置11…

STM32_SD卡的SDIO通信_基础读写

本篇将使用CubeMXKeil, 创建一个SD卡读写的工程。 目录 一、SD卡要点速读 二、SDIO要点速读 三、SD卡座接线原理图 四、CubeMX新建工程 五、CubeMX 生成 SD卡的SDIO通信部分 六、Keil 编辑工程代码 七、实验效果 一、SD卡 速读 SD卡&#xff0c;全称Secure Digital M…

大模型GUI系列论文阅读 DAY2续:《一个具备规划、长上下文理解和程序合成能力的真实世界Web代理》

摘要 预训练的大语言模型&#xff08;LLMs&#xff09;近年来在自主网页自动化方面实现了更好的泛化能力和样本效率。然而&#xff0c;在真实世界的网站上&#xff0c;其性能仍然受到以下问题的影响&#xff1a;(1) 开放领域的复杂性&#xff0c;(2) 有限的上下文长度&#xff…

【ESP32】ESP32连接JY61P并通过WIFI发送给电脑

前言 手头上有个ESP32&#xff0c;发现有wifi功能&#xff0c;希望连接JY61P并通过WIFI把姿态数据发送给电脑 1.采用Arduino IDE编译器&#xff1b;需要安装ESP32的开发板管理器&#xff1b; 2.电脑接受数据是基于python的&#xff1b; 1. ESP32 连接手机WIFI #include <…

C语言程序设计十大排序—冒泡排序

文章目录 1.概念✅2.冒泡排序&#x1f388;3.代码实现✅3.1 直接写✨3.2 函数✨ 4.总结✅ 1.概念✅ 排序是数据处理的基本操作之一&#xff0c;每次算法竞赛都很多题目用到排序。排序算法是计算机科学中基础且常用的算法&#xff0c;排序后的数据更易于处理和查找。在计算机发展…

【Elasticsearch】腾讯云安装Elasticsearch

Elasticsearch 认识Elasticsearch安装Elasticsearch安装Kibana安装IK分词器分词器的作用是什么&#xff1f;IK分词器有几种模式&#xff1f;IK分词器如何拓展词条&#xff1f;如何停用词条&#xff1f; 认识Elasticsearch Elasticsearch的官方网站如下 Elasticsearch官网 Ela…

Django学习笔记(安装和环境配置)-01

Django学习笔记(安装和环境配置)-01 一、创建python环境 1、可以通过安装Anaconda来创建一个python环境 # 创建一个虚拟python环境 conda create -n django python3.8 # 切换激活到创建的环境中 activate django2、安装django # 进入虚拟环境中安装django框架 pip install …