【InternLM 实战营笔记】XTuner 大模型单卡低成本微调实战

XTuner概述

一个大语言模型微调工具箱。由 MMRazor 和 MMDeploy 联合开发。

支持的开源LLM (2023.11.01)

InternLM
Llama,Llama2
ChatGLM2,ChatGLM3
Qwen
Baichuan,Baichuan2
Zephyr

特色

傻瓜化: 以 配置文件 的形式封装了大部分微调场景,0基础的非专业人员也能一键开始微调。
轻量级: 对于 7B 参数量的LLM,微调所需的最小显存仅为 8GB : 消费级显卡,colab

微调原理

  • 因此,你找到了一种叫 LoRA 的方法:只对玩具中的某些零件进行改动,而不是对整个玩具进行全面改动。
  • 而 QLoRA 是 LoRA 的一种改进:如果你手里只有一把生锈的螺丝刀,也能改造你的玩具。

实践过程

安装

# 如果你是在 InternStudio 平台,则从本地 clone 一个已有 pytorch 2.0.1 的环境:
/root/share/install_conda_env_internlm_base.sh xtuner0.1.9

# 激活环境
conda activate xtuner0.1.9
# 进入家目录 (~的意思是 “当前用户的home路径”)
cd ~
# 创建版本文件夹并进入,以跟随本教程
mkdir xtuner019 && cd xtuner019


# 拉取 0.1.9 的版本源码
git clone -b v0.1.9  https://github.com/InternLM/xtuner
# 无法访问github的用户请从 gitee 拉取:
# git clone -b v0.1.9 https://gitee.com/Internlm/xtuner

# 进入源码目录
cd xtuner

# 从源码安装 XTuner
pip install -e '.[all]'

准备在 oasst1 数据集上微调 internlm-7b-chat

# 创建一个微调 oasst1 数据集的工作路径,进入
mkdir ~/ft-oasst1 && cd ~/ft-oasst1

微调

XTuner 提供多个开箱即用的配置文件,用户可以通过下列命令查看:

# 列出所有内置配置
xtuner list-cfg

拷贝一个配置文件到当前目录:

# xtuner copy-cfg ${CONFIG_NAME} ${SAVE_PATH}

本例中

cd ~/ft-oasst1
xtuner copy-cfg internlm_chat_7b_qlora_oasst1_e3 .

模型下载

直接复制模型

ln -s /share/temp/model_repos/internlm-chat-7b ~/ft-oasst1/

数据集下载

cd ~/ft-oasst1
# ...-guanaco 后面有个空格和英文句号啊
cp -r /root/share/temp/datasets/openassistant-guanaco .

修改配置文件

cd ~/ft-oasst1
vim internlm_chat_7b_qlora_oasst1_e3_copy.py

开始微调

xtuner train ./internlm_chat_7b_qlora_oasst1_e3_copy.py

将得到的 PTH 模型转换为 HuggingFace 模型,即:生成 Adapter 文件夹

mkdir hf
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert pth_to_hf ./internlm_chat_7b_qlora_oasst1_e3_copy.py ./work_dirs/internlm_chat_7b_qlora_oasst1_e3_copy/epoch_1.pth ./hf

部署与测试

将 HuggingFace adapter 合并到大语言模型

xtuner convert merge ./internlm-chat-7b ./hf ./merged --max-shard-size 2GB

与合并后的模型对话

xtuner chat ./merged --prompt-template internlm_chat

修改 cli_demo.py 中的模型路径

- model_name_or_path = "/root/model/Shanghai_AI_Laboratory/internlm-chat-7b"
+ model_name_or_path = "merged"

运行

python ./cli_demo.py

作业

conda create --name personal_assistant --clone=/root/share/conda_envs/internlm-base
# 如果在其他平台:
# conda create --name personal_assistant python=3.10 -y

# 激活环境
conda activate personal_assistant
# 进入家目录 (~的意思是 “当前用户的home路径”)
cd ~
# 创建版本文件夹并进入,以跟随本教程
# personal_assistant用于存放本教程所使用的东西
mkdir /root/personal_assistant && cd /root/personal_assistant
mkdir /root/personal_assistant/xtuner019 && cd /root/personal_assistant/xtuner019

# 拉取 0.1.9 的版本源码
git clone -b v0.1.9  https://github.com/InternLM/xtuner
# 无法访问github的用户请从 gitee 拉取:
# git clone -b v0.1.9 https://gitee.com/Internlm/xtuner

# 进入源码目录
cd xtuner

# 从源码安装 XTuner
pip install -e '.[all]'

数据准备

mkdir -p /root/personal_assistant/data && cd /root/personal_assistant/data

在data目录下创建一个json文件personal_assistant.json作为本次微调所使用的数据集。json中内容可参考下方(复制粘贴n次做数据增广,数据量小无法有效微调,下面仅用于展示格式,下面也有生成脚本)

其中conversation表示一次对话的内容,input为输入,即用户会问的问题,output为输出,即想要模型回答的答案。

以下是一个python脚本,用于生成数据集。在data目录下新建一个generate_data.py文件,将以下代码复制进去,然后运行该脚本即可生成数据集。

import json

# 输入你的名字
name = 'Shengshenlan'
# 重复次数
n = 10000

data = [
    {
        "conversation": [
            {
                "input": "请做一下自我介绍",
                "output": "我是{}的小助手,内在是上海AI实验室书生·浦语的7B大模型哦".format(name)
            }
        ]
    }
]

for i in range(n):
    data.append(data[0])

with open('personal_assistant.json', 'w', encoding='utf-8') as f:
    json.dump(data, f, ensure_ascii=False, indent=4)

配置准备

mkdir -p /root/personal_assistant/model/Shanghai_AI_Laboratory
cp -r /root/share/temp/model_repos/internlm-chat-7b /root/personal_assistant/model/Shanghai_AI_Laboratory

#创建用于存放配置的文件夹config并进入
mkdir /root/personal_assistant/config && cd /root/personal_assistant/config

xtuner copy-cfg internlm_chat_7b_qlora_oasst1_e3 .

修改拷贝后的文件internlm_chat_7b_qlora_oasst1_e3_copy.py

# Copyright (c) OpenMMLab. All rights reserved.
import torch
from bitsandbytes.optim import PagedAdamW32bit
from datasets import load_dataset
from mmengine.dataset import DefaultSampler
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
                            LoggerHook, ParamSchedulerHook)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR
from peft import LoraConfig
from transformers import (AutoModelForCausalLM, AutoTokenizer,
                          BitsAndBytesConfig)

from xtuner.dataset import process_hf_dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import oasst1_map_fn, template_map_fn_factory
from xtuner.engine import DatasetInfoHook, EvaluateChatHook
from xtuner.model import SupervisedFinetune
from xtuner.utils import PROMPT_TEMPLATE

#######################################################################
#                          PART 1  Settings                           #
#######################################################################
# Model
pretrained_model_name_or_path = '/root/personal_assistant/model/Shanghai_AI_Laboratory/internlm-chat-7b'

# Data
data_path = '/root/personal_assistant/data/personal_assistant.json'
prompt_template = PROMPT_TEMPLATE.internlm_chat
max_length = 512
pack_to_max_length = True

# Scheduler & Optimizer
batch_size = 2  # per_device
accumulative_counts = 16
dataloader_num_workers = 0
max_epochs = 3
optim_type = PagedAdamW32bit
lr = 2e-4
betas = (0.9, 0.999)
weight_decay = 0
max_norm = 1  # grad clip

# Evaluate the generation performance during the training
evaluation_freq = 90
SYSTEM = ''
evaluation_inputs = [ '请介绍一下你自己', '请做一下自我介绍' ]

#######################################################################
#                      PART 2  Model & Tokenizer                      #
#######################################################################
tokenizer = dict(
    type=AutoTokenizer.from_pretrained,
    pretrained_model_name_or_path=pretrained_model_name_or_path,
    trust_remote_code=True,
    padding_side='right')

model = dict(
    type=SupervisedFinetune,
    llm=dict(
        type=AutoModelForCausalLM.from_pretrained,
        pretrained_model_name_or_path=pretrained_model_name_or_path,
        trust_remote_code=True,
        torch_dtype=torch.float16,
        quantization_config=dict(
            type=BitsAndBytesConfig,
            load_in_4bit=True,
            load_in_8bit=False,
            llm_int8_threshold=6.0,
            llm_int8_has_fp16_weight=False,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type='nf4')),
    lora=dict(
        type=LoraConfig,
        r=64,
        lora_alpha=16,
        lora_dropout=0.1,
        bias='none',
        task_type='CAUSAL_LM'))

#######################################################################
#                      PART 3  Dataset & Dataloader                   #
#######################################################################
train_dataset = dict(
    type=process_hf_dataset,
    dataset=dict(type=load_dataset, path='json', data_files=dict(train=data_path)),
    tokenizer=tokenizer,
    max_length=max_length,
    dataset_map_fn=None,
    template_map_fn=dict(
        type=template_map_fn_factory, template=prompt_template),
    remove_unused_columns=True,
    shuffle_before_pack=True,
    pack_to_max_length=pack_to_max_length)

train_dataloader = dict(
    batch_size=batch_size,
    num_workers=dataloader_num_workers,
    dataset=train_dataset,
    sampler=dict(type=DefaultSampler, shuffle=True),
    collate_fn=dict(type=default_collate_fn))

#######################################################################
#                    PART 4  Scheduler & Optimizer                    #
#######################################################################
# optimizer
optim_wrapper = dict(
    type=AmpOptimWrapper,
    optimizer=dict(
        type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
    clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
    accumulative_counts=accumulative_counts,
    loss_scale='dynamic',
    dtype='float16')

# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md  # noqa: E501
param_scheduler = dict(
    type=CosineAnnealingLR,
    eta_min=0.0,
    by_epoch=True,
    T_max=max_epochs,
    convert_to_iter_based=True)

# train, val, test setting
train_cfg = dict(by_epoch=True, max_epochs=max_epochs, val_interval=1)

#######################################################################
#                           PART 5  Runtime                           #
#######################################################################
# Log the dialogue periodically during the training process, optional
custom_hooks = [
    dict(type=DatasetInfoHook, tokenizer=tokenizer),
    dict(
        type=EvaluateChatHook,
        tokenizer=tokenizer,
        every_n_iters=evaluation_freq,
        evaluation_inputs=evaluation_inputs,
        system=SYSTEM,
        prompt_template=prompt_template)
]

# configure default hooks
default_hooks = dict(
    # record the time of every iteration.
    timer=dict(type=IterTimerHook),
    # print log every 100 iterations.
    logger=dict(type=LoggerHook, interval=10),
    # enable the parameter scheduler.
    param_scheduler=dict(type=ParamSchedulerHook),
    # save checkpoint per epoch.
    checkpoint=dict(type=CheckpointHook, interval=1),
    # set sampler seed in distributed evrionment.
    sampler_seed=dict(type=DistSamplerSeedHook),
)

# configure environment
env_cfg = dict(
    # whether to enable cudnn benchmark
    cudnn_benchmark=False,
    # set multi process parameters
    mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
    # set distributed parameters
    dist_cfg=dict(backend='nccl'),
)

# set visualizer
visualizer = None

# set log level
log_level = 'INFO'

# load from which checkpoint
load_from = None

# whether to resume training from the loaded checkpoint
resume = False

# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)

微调启动

xtuner train /root/personal_assistant/config/internlm_chat_7b_qlora_oasst1_e3_copy.py

微调后参数转换/合并

# 创建用于存放Hugging Face格式参数的hf文件夹
mkdir /root/personal_assistant/config/work_dirs/hf

export MKL_SERVICE_FORCE_INTEL=1

# 配置文件存放的位置
export CONFIG_NAME_OR_PATH=/root/personal_assistant/config/internlm_chat_7b_qlora_oasst1_e3_copy.py

# 模型训练后得到的pth格式参数存放的位置
export PTH=/root/personal_assistant/config/work_dirs/internlm_chat_7b_qlora_oasst1_e3_copy/epoch_3.pth

# pth文件转换为Hugging Face格式后参数存放的位置
export SAVE_PATH=/root/personal_assistant/config/work_dirs/hf

# 执行参数转换
xtuner convert pth_to_hf $CONFIG_NAME_OR_PATH $PTH $SAVE_PATH

网页DEMO

安装依赖

pip install streamlit==1.24.0

下载项目

# 创建code文件夹用于存放InternLM项目代码
mkdir /root/personal_assistant/code && cd /root/personal_assistant/code
git clone https://github.com/InternLM/InternLM.git

将 /root/code/InternLM/web_demo.py 中 29 行和 33 行的模型路径更换为Merge后存放参数的路径 /root/personal_assistant/config/work_dirs/hf_merge

启动

streamlit run /root/personal_assistant/code/InternLM/web_demo.py --server.address 127.0.0.1 --server.port 6006

运行效果

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/417429.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Springboot中ApplicationContextInitializer的使用及源码分析

文章目录 一、认识ApplicationContextInitializer1、ApplicationContextInitializer的作用2、认识ApplicationContextInitializer接口3、ApplicationContextInitializer的常用用法(1)注册BeanFactoryPostProcessor(2)注册Applicat…

【程序员的金三银四求职宝典】《春风拂面,代码在手:程序员的金三银四求职指南》

《春风拂面,代码在手:程序员的金三银四求职指南》 随着春风的轻拂,大地复苏,万物更新。在这个生机勃勃的季节,不仅自然界在迎接新生,对于广大的程序员朋友们而言,这也是一个全新的开始——金三…

【刷题】 Leetcode 1022.从根到叶的二进制数之和

刷题 1022.从根到叶的二进制数之和题目描述:思路一(dfs深搜万能版)思路二 (栈迭代巧解版)总结 Thanks♪(・ω・)ノ谢谢阅读!!!下一篇文章见&#xff…

通过X射线光刻在指尖大小的芯片中产生高精度微光学元件的晶圆级制造

引言 在过去的二十年中,市场对大量N灰度级三维微纳米元件的需求一直很活跃。基于铅笔束的光刻技术,我们可以生产出精确的组件,但目前需要更长的时间去处理。使用X射线光刻制作的典型高纵横比结构,对膜的粗糙度或沉积在X射线掩模中…

C++ 网络编程学习三

C 网络编程学习三 用智能指针延长session的生命周期处理粘包问题 用智能指针延长session的生命周期 问题: 客户端断开后:会触发服务器对应session的写或读事件,由于是异步编程,需要在回调中对读写事件进行处理。客户端断开&#…

【Kubernetes】K3S

目录 前言一、原理单体架构高可用架构 二、初始化1.配置yum源2.关掉防火墙3.关掉selinux4. 修改内核参数5.关掉swap交换分区 三、安装master节点1. 安装container2.启动master服务 四、安装node节点五、卸载六、总结 前言 各位小伙伴们,大家好,小涛又来…

力扣每日一题 使二叉树所有路径值相等的最小代价 满二叉树 贪心

Problem: 2673. 使二叉树所有路径值相等的最小代价 文章目录 思路复杂度Code 思路 👨‍🏫 灵神题解 复杂度 ⏰ 时间复杂度: O ( n ) O(n) O(n) 🌎 空间复杂度: O ( 1 ) O(1) O(1) Code class Solution {public int minIncrements(int …

InnoDB锁介绍

本文主要介绍MySQL InnoDB引擎中的各种锁策略和锁类别,并针对记录锁做演示以便于理解。 以下内容适用于MySQL 8.0版本。 读写锁 处理并发读/写访问的系统通常实现一个由两种锁类型组成的锁系统。这两种锁通常被称为共享锁(shared lock)和排他锁(exclusive lock)&…

Java玩转《啊哈算法》暴力枚举之坑爹奥数

每个笨蛋都会随时准备杀了自己,这是最怯懦,也是最简单的出路。 路 缘起代码地址枚举题1题2题2 - Plus完整代码 缘起 各位小伙伴们好呀!本人最近看了下《啊哈算法》,写的确实不错。 但稍显遗憾的是,书籍示例代码是c语…

算法修炼-动态规划之斐波那契数列模型

一、动态规划的算法原理 这是本人动态规划的第一篇文章,所以先阐述一下动态规划的算法原理以及做题步骤。动态规划本人的理解就是通过题目所给的条件正确地填满dp表(一段数组)。首先要先确定好dp表每个位置的值所代表的含义是什么&#xff0c…

二叉树的增删查改

本节复习二叉树的增删查改, 二叉树的知识相对于前面的循序表, 链表, 以及栈和队列都要多一些。 同时二叉树的增删查改理解起来相对来说要困难一些。 本节来好好复习一下二叉树的增删查改。 目录 准备文件 创建结构体蓝图 二叉树的前序遍历…

Windows PowerShell 命令行历史记录补全

Windows 命令行历史记录补全 使用 powershell 安装PSReadLine 2.1.0 Install-Module PSReadLine -RequiredVersion 2.1.0检查是否存在配置文件 Test-path $profile # 为 false 则执行命令创建 New-item –type file –force $profile编辑配置文件 notepad $profile# 输入如下…

数据结构------栈(Stack)和队列(Queue)

也是好久没写博客了,那今天就回归一下,写一篇数据结构的博客吧。今天要写的是栈和队列,也是数据结构中比较基础的知识。那么下面开始今天要写的博客了。 目录 栈(Stack) 队列(Queue) 喜欢就点…

从C到C++

二、从C到C 本章介绍一些C拓展的非面向对象功能。 引用&#xff08;掌握&#xff09; 1.1 概念 引用从一定程度上讲是一个指针的平替&#xff0c;几乎被所有面向对象编程语言所使用。引用相当于对某一个目标变量起”别名“。 操作引用与操作原变量完全一样。 #include <iost…

工厂模式 详解 设计模式

工厂模式 其主要目的是封装对象的创建过程&#xff0c;使客户端代码和具体的对象实现解耦。这样子就不用每次都new对象&#xff0c;更换对象的话&#xff0c;所有new对象的地方也要修改&#xff0c;违背了开闭原则&#xff08;对扩展开放&#xff0c;对修改关闭&#xff09;。…

Unity UI适配规则和对热门游戏适配策略的拆解

前言 本文会介绍一些关于UI适配的基础概念&#xff0c;并且统计了市面上常见的设备的分辨率的情况。同时通过拆解目前市面上较为成功的两款休闲游戏Royal Match和Monopoly GO(两款均为近期游戏付费榜前几的游戏)&#xff0c;大致推断出他们的适配策略&#xff0c;以供学习和参…

go并发模式之----阻塞/屏障模式

常见模式之一&#xff1a;阻塞/屏障模式 定义 顾名思义&#xff0c;就是阻塞等待所有goroutine&#xff0c;直到所有goroutine完成&#xff0c;聚合所有结果 使用场景 多个网络请求&#xff0c;聚合结果 大任务拆分成多个子任务&#xff0c;聚合结果 示例 package main ​…

Delegate动画案例(P30 5.6delegate动画)

一、ListElement&#xff0c;ListModel&#xff0c;ListView 1. ListElement ListElement 是 QML 中用于定义列表项的元素。它可以包含多个属性&#xff0c;每个属性对应列表项中的一个数据字段。通过在 ListModel 中使用 ListElement&#xff0c;可以定义一个列表的数据模型…

USB-C接口:办公新宠,一线连接笔记本与显示器

USB-C接口如今已成为笔记本与显示器连接的优选方案。无需担心正反插错&#xff0c;支持雷电4和DP视频信号输出&#xff0c;高速数据传输&#xff0c;还有最高100W的快充功能&#xff0c;真是方便又实用&#xff01; 一线连接&#xff0c;多功能融合 通过这个接口&#xff0c;你…

面试笔记系列三之spring基础知识点整理及常见面试题

目录 如何实现一个IOC容器? 说说你对Spring 的理解&#xff1f; 你觉得Spring的核心是什么&#xff1f; 说一下使用spring的优势&#xff1f; Spring是如何简化开发的&#xff1f; IOC 运行时序 prepareRefresh() 初始化上下文环境 obtainFreshBeanFactory() 创建并…