【Matlab】智能优化算法_麻雀搜索算法SSA

【Matlab】智能优化算法_麻雀搜索算法SSA

  • 1.背景介绍
  • 2.数学模型
  • 3.文件结构
  • 4.伪代码
  • 5.详细代码及注释
    • 5.1 Get_Functions_details.m
    • 5.2 main.m
    • 5.3 SSA.m
  • 6.运行结果
  • 7.参考文献

1.背景介绍

麻雀通常是群居的鸟类,有很多种类。它们分布在世界的大部分地区,喜欢生活在人类生活的地方。此外,它们是杂食性鸟类,主要以谷物或杂草的种子为食。众所周知,麻雀是常见的留鸟。与其他许多小鸟相比,麻雀有很强的智慧,有很强的记忆力。请注意,有两种不同类型的圈养家雀,都是生产者和寻食者。生产者积极寻找食物来源,而蹭食者则通过生产者获得食物。此外,证据显示,鸟类通常灵活地使用行为策略,在生产和蹭食之间切换。也可以说,为了寻找他们的食物,麻雀通常使用生产者和搜寻者的策略。

研究表明,个体监视群体中其他人的行为。同时,鸟群中的攻击者,想提高自己的捕食率,就会用高摄入量的同伴来竞争食物资源。此外,当麻雀选择不同的觅食策略时,个体的能量储备可能起到重要的作用,能量储备低的麻雀会更多地蹭吃蹭喝。值得一提的是,位于种群外围的鸟类,更有可能受到捕食者的攻击,并不断尝试获得更好的位置。请注意,位于中心的动物,可能会向它们的邻居靠近,以减少它们的危险领域。我们还知道,所有的麻雀都表现出对一切事物好奇的自然本能,同时它们也总是保持着警惕。例如,当一只鸟确实检测到捕食者时,一个或多个个体发出一声鸣叫,整个群体就会飞走。

2.数学模型

麻雀搜索算法。为了简单起见,我们将麻雀的以下行为理想化,并制定了相应的规则。

  1. 生产者通常有高水平的能量储备,并为所有蹭吃蹭喝的人提供觅食区或方向。它负责识别可以找到丰富食物来源的区域。能量储备的水平取决于对个体的健身价值的评估。
  2. 一旦麻雀发现捕食者,个体就开始鸣叫作为报警信号。当报警值大于安全阈值时,生产者需要带领所有的蹭食者到安全区域。
  3. 每只麻雀只要寻找更好的食物来源,就能成为生产者,但整个种群中生产者和蹭食者的比例是不变的。
  4. 具有较高能量的麻雀会被当作生产者。几个饥饿的蹭食者更有可能飞到其他地方寻找食物,以获得更多的能量。
  5. 蹭食者跟随能提供最佳食物的生产者去寻找食物。同时,一些蹭食者可能会不断地监视生产者并争夺食物,以增加自己的捕食率。
  6. 当意识到有危险时,处于群体边缘的麻雀迅速向安全区域移动,以获得更好的位置,而处于群体中间的麻雀则随机行走,以接近其他人。

在模拟实验中,我们需要使用虚拟麻雀来寻找食物。麻雀的位置可以用以下矩阵表示:

在这里插入图片描述

其中n是麻雀的数量,d表示要优化的变量的维度。然后,所有麻雀的适应度值可以用以下向量表示:

在这里插入图片描述

其中n表示麻雀的数量,FX中每行的值表示个体的适应度值。在SSA中,具有更好适应度值的生产者在搜索过程中优先获得食物。此外,因为生产者负责搜索食物和引导整个人口的流动。所以,生产者可以在比拾荒者更广泛的地方寻找食物。根据规则(1)和(2),在每次迭代过程中,生产者的位置更新如下:

在这里插入图片描述

其中t表示当前迭代,j=1,2。。。,d.Xt i,j表示迭代时第i个麻雀的第j维的值。itermax是迭代次数最多的常数。α∈(0,1]是一个随机数。R2(R2∈[0,1])和ST(ST∈[0.5,1.0])分别表示报警值和安全阈值。Q是服从正态分布的随机数。L表示amatrixof1×d,其中内部的每个元素都是1。

当R2<ST时,这意味着周围没有捕食者,生产者进入广泛搜索模式。如果R2≥ST,则意味着一些麻雀已经发现了捕食者,所有麻雀都需要迅速飞往其他安全区域。

至于拾荒者,他们需要执行规则(4)和(5)。如上所述,一些拾荒者更频繁地监视生产者。一旦他们发现生产者找到了好的食物,他们就会立即离开目前的位置去争夺食物。如果他们赢了,他们可以立即得到生产者的食物,否则他们将继续执行规则(5)。搜寻者的位置更新公式如下所述:

在这里插入图片描述

其中XP是生产者占据的最佳位置。Xworst表示当前全球最差位置。A代表一个1×d的矩阵,里面的每个元素都被随机分配为1或-1,A+=AT(AAT )-1。当i>n/2时,表明健身值较差的第1个蹭饭的人最有可能挨饿。

在模拟实验中,我们假设这些意识到危险的麻雀占总种群的10%到20%。这些麻雀的初始位置是在种群中随机产生的。根据规则(6),数学模型可以表达如下:

在这里插入图片描述

其中Xbest是当前的全局最优位置。β,作为步长控制参数,是一个均值为0,方差为1的正态分布的随机数。 K∈[-1, 1]是一个随机数。这里fi是当前麻雀的适配值。fg和fw分别是当前全球最佳和最差的适配值。ε是最小的常数,以避免零除法错误。

为了简单起见,当fi > fg时,表示麻雀处于群体的边缘。Xbest代表种群中心的位置,在其周围是安全的。fi = fg表明处于种群中间的麻雀意识到了危险,需要向其他麻雀靠近。K表示麻雀移动的方向,也是步长的控制系数。

3.文件结构

在这里插入图片描述

Get_Functions_details.m			% 基准的全部信息和实现
main.m							% 主函数
SSA.m							% 麻雀搜索算法

4.伪代码

在这里插入图片描述

5.详细代码及注释

5.1 Get_Functions_details.m

function [lb,ub,dim,fobj] = Get_Functions_details(F)
switch F
    case 'F1'
        fobj = @F1;
        lb=-100;
        ub=100;
        dim=30;
        
    case 'F2'
        fobj = @F2;
        lb=-10;
        ub=10;
        dim=30;
        
    case 'F3'
        fobj = @F3;
        lb=-100;
        ub=100;
        dim=30;
        
    case 'F4'
        fobj = @F4;
        lb=-100;
        ub=100;
        dim=30;
        
    case 'F5'
        fobj = @F5;
        lb=-30;
        ub=30;
        dim=30;
        
    case 'F6'
        fobj = @F6;
        lb=-100;
        ub=100;
        dim=30;
        
    case 'F7'
        fobj = @F7;
        lb=-1.28;
        ub=1.28;
        dim=30;
        
    case 'F8'
        fobj = @F8;
        lb=-500;
        ub=500;
        dim=30;
        
    case 'F9'
        fobj = @F9;
        lb=-5.12;
        ub=5.12;
        dim=30;
        
    case 'F10'
        fobj = @F10;
        lb=-32;
        ub=32;
        dim=30;
        
    case 'F11'
        fobj = @F11;
        lb=-600;
        ub=600;
        dim=30;
        
    case 'F12'
        fobj = @F12;
        lb=-50;
        ub=50;
        dim=30;
        
    case 'F13'
        fobj = @F13;
        lb=-50;
        ub=50;
        dim=30;
        
    case 'F14'
        fobj = @F14;
        lb=-65.536;
        ub=65.536;
        dim=2;
        
    case 'F15'
        fobj = @F15;
        lb=-5;
        ub=5;
        dim=4;
        
    case 'F16'
        fobj = @F16;
        lb=-5;
        ub=5;
        dim=2;
        
    case 'F17'
        fobj = @F17;
        lb=[-5,0];
        ub=[10,15];
        dim=2;
        
    case 'F18'
        fobj = @F18;
        lb=-2;
        ub=2;
        dim=2;
        
    case 'F19'
        fobj = @F19;
        lb=0;
        ub=1;
        dim=3;
        
    case 'F20'
        fobj = @F20;
        lb=0;
        ub=1;
        dim=6;     
        
    case 'F21'
        fobj = @F21;
        lb=0;
        ub=10;
        dim=4;    
        
    case 'F22'
        fobj = @F22;
        lb=0;
        ub=10;
        dim=4;    
        
    case 'F23'
        fobj = @F23;
        lb=0;
        ub=10;
        dim=4;            
end

end

% F1

function o = F1(x)
o=sum(x.^2);
end

% F2

function o = F2(x)
o=sum(abs(x))+prod(abs(x));
end

% F3

function o = F3(x)
dim=size(x,2);
o=0;
for i=1:dim
    o=o+sum(x(1:i))^2;
end
end

% F4

function o = F4(x)
o=max(abs(x));
end

% F5

function o = F5(x)
dim=size(x,2);
o=sum(100*(x(2:dim)-(x(1:dim-1).^2)).^2+(x(1:dim-1)-1).^2);
end

% F6

function o = F6(x)
o=sum(abs((x+.5)).^2);
end

% F7

function o = F7(x)
dim=size(x,2);
o=sum([1:dim].*(x.^4))+rand;
end

% F8

function o = F8(x)
o=sum(-x.*sin(sqrt(abs(x))));
end

% F9

function o = F9(x)
dim=size(x,2);
o=sum(x.^2-10*cos(2*pi.*x))+10*dim;
end

% F10

function o = F10(x)
dim=size(x,2);
o=-20*exp(-.2*sqrt(sum(x.^2)/dim))-exp(sum(cos(2*pi.*x))/dim)+20+exp(1);
end

% F11

function o = F11(x)
dim=size(x,2);
o=sum(x.^2)/4000-prod(cos(x./sqrt([1:dim])))+1;
end

% F12

function o = F12(x)
dim=size(x,2);
o=(pi/dim)*(10*((sin(pi*(1+(x(1)+1)/4)))^2)+sum((((x(1:dim-1)+1)./4).^2).*...
(1+10.*((sin(pi.*(1+(x(2:dim)+1)./4)))).^2))+((x(dim)+1)/4)^2)+sum(Ufun(x,10,100,4));
end

% F13

function o = F13(x)
dim=size(x,2);
o=.1*((sin(3*pi*x(1)))^2+sum((x(1:dim-1)-1).^2.*(1+(sin(3.*pi.*x(2:dim))).^2))+...
((x(dim)-1)^2)*(1+(sin(2*pi*x(dim)))^2))+sum(Ufun(x,5,100,4));
end

% F14

function o = F14(x)
aS=[-32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32;,...
-32 -32 -32 -32 -32 -16 -16 -16 -16 -16 0 0 0 0 0 16 16 16 16 16 32 32 32 32 32];

for j=1:25
    bS(j)=sum((x'-aS(:,j)).^6);
end
o=(1/500+sum(1./([1:25]+bS))).^(-1);
end

% F15

function o = F15(x)
aK=[.1957 .1947 .1735 .16 .0844 .0627 .0456 .0342 .0323 .0235 .0246];
bK=[.25 .5 1 2 4 6 8 10 12 14 16];bK=1./bK;
o=sum((aK-((x(1).*(bK.^2+x(2).*bK))./(bK.^2+x(3).*bK+x(4)))).^2);
end

% F16

function o = F16(x)
o=4*(x(1)^2)-2.1*(x(1)^4)+(x(1)^6)/3+x(1)*x(2)-4*(x(2)^2)+4*(x(2)^4);
end

% F17

function o = F17(x)
o=(x(2)-(x(1)^2)*5.1/(4*(pi^2))+5/pi*x(1)-6)^2+10*(1-1/(8*pi))*cos(x(1))+10;
end

% F18

function o = F18(x)
o=(1+(x(1)+x(2)+1)^2*(19-14*x(1)+3*(x(1)^2)-14*x(2)+6*x(1)*x(2)+3*x(2)^2))*...
    (30+(2*x(1)-3*x(2))^2*(18-32*x(1)+12*(x(1)^2)+48*x(2)-36*x(1)*x(2)+27*(x(2)^2)));
end

% F19

function o = F19(x)
aH=[3 10 30;.1 10 35;3 10 30;.1 10 35];cH=[1 1.2 3 3.2];
pH=[.3689 .117 .2673;.4699 .4387 .747;.1091 .8732 .5547;.03815 .5743 .8828];
o=0;
for i=1:4
    o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));
end
end

% F20

function o = F20(x)
aH=[10 3 17 3.5 1.7 8;.05 10 17 .1 8 14;3 3.5 1.7 10 17 8;17 8 .05 10 .1 14];
cH=[1 1.2 3 3.2];
pH=[.1312 .1696 .5569 .0124 .8283 .5886;.2329 .4135 .8307 .3736 .1004 .9991;...
.2348 .1415 .3522 .2883 .3047 .6650;.4047 .8828 .8732 .5743 .1091 .0381];
o=0;
for i=1:4
    o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));
end
end

% F21

function o = F21(x)
aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];

o=0;
for i=1:5
    o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end

% F22

function o = F22(x)
aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];

o=0;
for i=1:7
    o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end

% F23

function o = F23(x)
aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];

o=0;
for i=1:10
    o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end

function o=Ufun(x,a,k,m)
o=k.*((x-a).^m).*(x>a)+k.*((-x-a).^m).*(x<(-a));
end

5.2 main.m

clc
clear
close all
SearchAgents_no=100; % Number of search agents

Function_name='F15'; % Name of the test function that can be from F1 to F23 (Table 1,2,3 in the paper)

Max_iteration=1000; % Maximum numbef of iterations

% Load details of the selected benchmark function
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);

[fMin,bestX,SSA_curve]=SSA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);  


%Draw objective space
 semilogy(SSA_curve,'Color','g')
  
axis ([0 1000 0 1 ])
title('Objective space')
xlabel('Iteration');
ylabel('Best score obtained so far');
%axis tight
grid on
box on
legend('SSA')
display(['The best solution obtained by SSA is : ', num2str(bestX)]);
display(['The best optimal value of the objective funciton found by SSA is : ', num2str(fMin)]);

5.3 SSA.m

function [fMin , bestX,Convergence_curve ] = SSA(pop, M,c,d,dim,fobj  )

P_percent = 0.2;    % The population size of producers accounts for "P_percent" percent of the total population size
pNum = round( pop *  P_percent );    % The population size of the producers


lb= c.*ones( 1,dim );    % Lower limit/bounds/     a vector
ub= d.*ones( 1,dim );    % Upper limit/bounds/     a vector
%Initialization
for i = 1 : pop

    x( i, : ) = lb + (ub - lb) .* rand( 1, dim );
    fit( i ) = fobj( x( i, : ) ) ;
end
pFit = fit;
pX = x;                            % The individual's best position corresponding to the pFit
[ fMin, bestI ] = min( fit );      % fMin denotes the global optimum fitness value
bestX = x( bestI, : );             % bestX denotes the global optimum position corresponding to fMin


% Start updating the solutions.

for t = 1 : M


    [ ans, sortIndex ] = sort( pFit );% Sort.

    [fmax,B]=max( pFit );
    worse= x(B,:);

    r2=rand(1);
    if(r2<0.8)

        for i = 1 : pNum                                                   % Equation (3)
            r1=rand(1);
            x( sortIndex( i ), : ) = pX( sortIndex( i ), : )*exp(-(i)/(r1*M));
            x( sortIndex( i ), : ) = Bounds( x( sortIndex( i ), : ), lb, ub );
            fit( sortIndex( i ) ) = fobj( x( sortIndex( i ), : ) );
        end
    else
        for i = 1 : pNum

            x( sortIndex( i ), : ) = pX( sortIndex( i ), : )+randn(1)*ones(1,dim);
            x( sortIndex( i ), : ) = Bounds( x( sortIndex( i ), : ), lb, ub );
            fit( sortIndex( i ) ) = fobj( x( sortIndex( i ), : ) );

        end

    end


    [ fMMin, bestII ] = min( fit );
    bestXX = x( bestII, : );


    for i = ( pNum + 1 ) : pop                     % Equation (4)

        A=floor(rand(1,dim)*2)*2-1;

        if( i>(pop/2))
            x( sortIndex(i ), : )=randn(1)*exp((worse-pX( sortIndex( i ), : ))/(i)^2);
        else
            x( sortIndex( i ), : )=bestXX+(abs(( pX( sortIndex( i ), : )-bestXX)))*(A'*(A*A')^(-1))*ones(1,dim);

        end
        x( sortIndex( i ), : ) = Bounds( x( sortIndex( i ), : ), lb, ub );
        fit( sortIndex( i ) ) = fobj( x( sortIndex( i ), : ) );

    end
    c=randperm(numel(sortIndex));
    b=sortIndex(c(1:20));
    for j =  1  : length(b)      % Equation (5)

        if( pFit( sortIndex( b(j) ) )>(fMin) )

            x( sortIndex( b(j) ), : )=bestX+(randn(1,dim)).*(abs(( pX( sortIndex( b(j) ), : ) -bestX)));

        else

            x( sortIndex( b(j) ), : ) =pX( sortIndex( b(j) ), : )+(2*rand(1)-1)*(abs(pX( sortIndex( b(j) ), : )-worse))/ ( pFit( sortIndex( b(j) ) )-fmax+1e-50);

        end
        x( sortIndex(b(j) ), : ) = Bounds( x( sortIndex(b(j) ), : ), lb, ub );

        fit( sortIndex( b(j) ) ) = fobj( x( sortIndex( b(j) ), : ) );
    end
    for i = 1 : pop
        if ( fit( i ) < pFit( i ) )
            pFit( i ) = fit( i );
            pX( i, : ) = x( i, : );
        end

        if( pFit( i ) < fMin )
            fMin= pFit( i );
            bestX = pX( i, : );


        end
    end

    Convergence_curve(t)=fMin;

end


% Application of simple limits/bounds
function s = Bounds( s, Lb, Ub)
% Apply the lower bound vector
temp = s;
I = temp < Lb;
temp(I) = Lb(I);

% Apply the upper bound vector
J = temp > Ub;
temp(J) = Ub(J);
% Update this new move
s = temp;

%---------------------------------------------------------------------------------------------------------------------------

6.运行结果

在这里插入图片描述

7.参考文献

[1]Xue J,Shen B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering,2020,8(1).

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/38682.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Http host 标头攻击

一、什么是http host 标头攻击 HTTP Host 标头攻击是一种网络安全攻击技术&#xff0c;利用了 HTTP 协议中的 Host 标头字段的漏洞。Host 标头字段用于指定客户端请求的目标主机名或域名。 攻击者可以通过构造恶意的 HTTP 请求&#xff0c;伪造或篡改 Host 标头字段的值&#x…

高精尖领域数据暴增,分布式存储渐当大任

近年来&#xff0c;数据存储市场“最靓的仔”无疑就是分布式存储。 大模型火了之后&#xff0c;围绕Chat的应用也越来越多&#xff0c;通过AI生成图片、报表、音视频的应用比比皆是。众所周知&#xff0c;要想训练出一个有学习能力的、可理解的、响应迅速的大模型应用&#xf…

[NGINX] NGINX下载、安装编译、启动检查停止命令

一、NGINX 下载 mkdir -p /soft/nginx cd /soft/nginx wget https://nginx.org/download/nginx-1.21.6.tar.gz二、下载相关依赖 ①在线安装依赖&#xff1a; yum -y install gcc zlib zlib-devel pcre-devel openssl openssl-devel ②下载依赖到本地安装依赖&#xff1a; y…

InsCode Stable Diffusion使用教程【InsCode Stable Diffusion美图活动一期】

记录一下如何使用 InsCode Stable Diffusion 进行 AI 绘图以及使用感受。 一、背景介绍 目前市面上比较权威&#xff0c;并能用于工作中的 AI 绘画软件其实就两款。一个叫 Midjourney&#xff08;简称 MJ&#xff09;&#xff0c;另一个叫 Stable Diffusion&#xff08;简称 …

使用 uiautomator2+pytest+allure 进行 Android 的 UI 自动化测试

目录 前言&#xff1a; 介绍 pytest uiautomator2 allure 环境搭建 pytest uiautomator2 allure pytest 插件 实例 初始化 driver fixture 机制 数据共享 测试类 参数化 指定顺序 运行指定级别 重试 hook 函数 断言 运行 运行某个文件夹下的用例 运行某…

RabbitMQ保证消息的可靠投递,Java实现RabbitMQ消息的可靠投递,Springboot实现RabbitMQ消息的可靠投递

文章目录 一、RabbitMQ消息可靠性概述1、引出问题2、RabbitMQ消息可靠性保证的四个环节 二、保证生产者消息发送到RabbitMQ服务器1、服务端确认&#xff1a;Transaction模式&#xff08;1&#xff09;JavaAPI&#xff08;2&#xff09;springbootAPI 2、服务端确认&#xff1a;…

laravel 的SQL使用正则匹配

案例场景 精准正则匹配 查询结果 代码如下 $regexp ^ . $new_str . [^0-9];$info Test::query()->where(is_del, 0)->whereRaw("name REGEXP $regexp")->pluck(name, id)->toArray();字符 “^” 匹配以特定字符或者字符串开头的文本 name 字段值包含…

【kubernetes系列】Kubernetes之调度器和调度过程

Kubernetes之调度器和调度过程 概述 当用户请求向API server创建新的Pod时&#xff0c;API server检查授权、权限等没有任何问题的话&#xff0c;他会把这个请求交由Scheduler&#xff0c;由Scheduler检查所有符合该Pod要求的列表&#xff0c;开始执行Pod调度逻辑&#xff0c…

AI智能助手的未来:与人类互动的下一代人工智能技术

自我介绍⛵ &#x1f4e3;我是秋说&#xff0c;研究人工智能、大数据等前沿技术&#xff0c;传递Java、Python等语言知识。 &#x1f649;主页链接&#xff1a;秋说的博客 &#x1f4c6; 学习专栏推荐&#xff1a;人工智能&#xff1a;创新无限、MySQL进阶之路、C刷题集、网络安…

WEB APIs day4 (1)

一、日期对象 1.实例化 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" content"widthdevi…

数据结构——六大排序 (插入,选择,希尔,冒泡,堆,快速排序)

1. 插入排序 1.1基本思路 把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中&#xff0c;直到所有的记录插入完为止&#xff0c;得到一个新的有序序列 我们熟知的斗地主就是一个插入排序 1.2 代码实现 我们这里将一个无序数组变成有序数组 插入排序时…

antd-React Table 中文转化

1.首先需要进行中文包导入 2.引入标签对Table进行包裹即可 import zh_CN from antd/lib/locale-provider/zh_CN;import {ConfigProvider} from antd;<ConfigProvider locale{zh_CN}><Tablecolumns{columns}rowKey{record > record.id}dataSource{data}pagination{p…

SQL进阶(2)——SQL语句类型 增删改查CRUD 事务初步 表关联关系 视图 +索引

目录 引出SQL语句类型1.DML数据操纵语言&#xff08;重点&#xff09;2.DQL数据查询语言&#xff08;重点&#xff09;3.DDL(Data Definition Language了解)4.DCL(Data Control Language了解)5.TCL 事务控制语言 运算符和其他函数1.运算符2.其它函数增删改查CRUD 视图索引事务1…

如何克服Leetcode做题的困境

文章目录 如何克服Leetcode做题的困境问题背景克服困境的建议实践与理论结合切忌死记硬背分析解题思路不要过早看答案迭代式学习寻求帮助坚持与耐心查漏补缺 结论 如何克服Leetcode做题的困境 问题背景 明明自觉学会了不少知识&#xff0c;可真正开始做Leetcode题目时&#x…

基于单片机的恒温恒湿温室大棚温湿度控制系统的设计与实现

功能介绍 以51单片机作为主控系统&#xff1b;液晶显示当前温湿度按键设置温湿度报警上限和下限&#xff1b;温度低于下限继电器闭合加热片进行加热&#xff1b;温度超过上限继电器闭合开启风扇进行降温湿度低于下限继电器闭合加湿器进行加湿湿度高于上限继电器闭合开启风扇进行…

JavaWeb(3)——HTML、CSS、JS 快速入门

一、JavaScript 运算符 • 赋值运算符&#xff08; &#xff09; 赋值运算符执行过程&#xff1f; 将等号右边的值赋予给左边, 要求左边必须是一个容器 出现是为了简化代码, 比如让 let age 18 &#xff0c;age 加 2 怎么写呢 let age 18age 2console.log(age)age * 2con…

苹果APP安装包ipa如何安装在手机上

苹果APP安装包ipa如何安装在手机上 苹果APP的安装比安卓复杂且困难&#xff0c;很多人不知道如何将ipa文件安装到手机上。以下是几种苹果APP安装在iOS设备的方式&#xff0c;供大家参考。 一、上架App Store 这是最正规的方式。虽然审核过程复杂、时间较长&#xff0c;且审核…

关于电脑显示器屏幕看不出灰色,灰色和白色几乎一样无法区分,色彩调整方法

问题&#xff1a; 电脑显示器屏幕看不出灰色&#xff0c;灰色和白色几乎一样无法区分。白色和灰色有色差。 解决方法&#xff1a; 打开“控制面板” ->“色彩管理” ->“高级” ->“校正显示器” 在下一步调节中调成中间这一个实例的样子就可以了 进行微调&#x…

基于linux下的高并发服务器开发(第二章)- 2.9 waitpid 函数

#include <sys/types.h> #include <sys/wait.h>pid_t waitpid(pid_t pid, int *wstatus, int options); 功能&#xff1a;回收指定进程号的子进程&#xff0c;可以设置是否阻塞。 参数&#xff1a; - pid: pid > 0…

小白到运维工程师的自学之路 第五十四集 (ansible自动化运维工具)

一、概述 Ansible是一种开源的自动化工具&#xff0c;用于自动化任务的执行、配置管理和应用部署。它采用基于Python编写的简单、轻量级的语法&#xff0c;可以通过SSH协议远程管理和配置多台计算机。 Ansible的主要特点包括&#xff1a; 1、简单易用&#xff1a;设计简单&a…