论文解读:MobileOne: An Improved One millisecond Mobile Backbone

论文创新点汇总:人工智能论文通用创新点(持续更新中...)-CSDN博客

论文总结

关于如何提升模型速度,当今学术界的研究往往聚焦于如何将FLOPs或者参数量的降低,而作者认为应该是减少分支数和选择高效的网络结构

概述

MobileOne(≈MobileNetV1+RepVGG+训练Trick)是由Apple公司提出的一种基于iPhone12优化的超轻量型架构,在ImageNet数据集上以<1ms的速度取得了75.9%的Top1精度。

MobileOne

高效率网络具有很高的价值,但学术界的研究往往聚焦于如何将FLOPs或者参数量的降低,而这两者与推理效率之间并不存在严格的一致性。比如,FLOPs并未考虑访存消耗与计算并行度,像无参操作(如跳过连接导致的Add、Concat等)会带来显著的访存消耗,导致更长推理耗时。

度量关系

从上图可以看出,延迟的快慢与模型的参数量或者FLOPs的相关性较弱,在CPU端相关性更弱

关键瓶颈

本文对影响模型性能的两个"瓶颈"进行分析,并提出相应方案;

激活函数

从下表可以看出,尽管具有相同的架构,但不同激活函数导致的延迟差异极大。本文默认选择ReLU激活函数。

结构块

从下表可以看出,当采用单分支结构时,模型具有更快的速度。为改善效率,本文在大模型配置方面有限的采用了SE模块。

MobileOne Block

MobileOne的核心模块基于MobileNetV1而设计,同时吸收了重参数思想,得到下图所示的结构。

图3。MobileOne块在训练时间和测试时间有两种不同的结构。左:训练时间MobileOne块与可重新参数化的分支。右:MobileOne块在推理分支被重新参数化。ReLU或SEReLU被用作激活。琐碎的过参数化因子k是一个针对每个变量进行调优的超参数。

结构

最近的工作在于如何缩放模型尺寸,如宽度、深度和分辨率,以提高性能[22,54]。MobileOne具有与MobileNet-V2相似的深度缩放,即使用较浅的早期阶段,其中输入分辨率较大,因为这些层与使用较小输入分辨率的后期阶段相比要慢得多。我们引入5种不同的宽度尺度,如表7所示。

其中\alpha用于控制通道数,k为分支数

S1-S4的区别更多是S4分支数少,S1分支数多

表8所示。MobileOne-S2在各种训练设置上的消融在ImageNet上显示了Top-1的精度。

图4。MobileOne-S0模型的训练和验证损失图。从无分支到增加k=1的可重新参数化分支,列车损失降低3.4%。增加更多的分支(k=4)可使列车损失额外降低约1%。从没有分支到具有可重新参数化分支的变体(k=4),验证损失提高了3.1%。

实验

我们使用S1和S2标准增强-随机调整大小的裁剪和水平翻转。我们还使用衰减常数为0.9995的EMA(指数移动平均)加权平均来训练所有版本的MobileOne。在测试时,所有MobileOne模型在分辨率为224 × 224的图像上进行评估。在表9中,我们比较了所有最近的高效模型,这些模型是在分辨率为224×224的图像上进行评估的,同时参数计数< 2000万,并且没有像以前的工作(如[5,45])那样进行蒸馏训练。FLOP计数是使用fvcore[17]库报告的。

我们表明,即使是最小的变压器架构变体,在移动设备上也有超过4ms的延迟。目前最先进的MobileFormer[5]以70.76ms的延迟达到79.3%的最高精度,而MobileOne-S4以1.86ms的延迟达到79.4%,这在移动设备上快了38倍。MobileOne-S3的top-1准确率比EfficientNet-B0高1%,在移动设备上则快11%。与竞争对手的方法相比,我们的模型甚至在CPU和GPU上具有更低的延迟。

讨论

我们提出了一种高效、通用的移动设备骨干网。我们的主干适用于一般任务,如图像分类,目标检测和语义分割。我们表明,在有效状态下,延迟可能与其他指标(如参数计数和FLOPs)不太相关。此外,我们通过直接在移动设备上测量其延迟来分析现代高效cnn中使用的各种架构组件的效率瓶颈。我们通过经验证明了使用可重新参数化结构对优化瓶颈的改善。我们使用可重新参数化结构的模型扩展策略获得了最先进的性能,同时在移动设备和桌面CPU上都很高效。

核心代码

源码实现

def conv_bn(in_channels, out_channels, kernel_size, stride, padding, groups=1):
    result = nn.Sequential()
    result.add_module('conv', nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
                                        kernel_size=kernel_size, stride=stride, padding=padding, groups=groups,
                                        bias=False))
    result.add_module('bn', nn.BatchNorm2d(num_features=out_channels))
    return result


class DepthWiseConv(nn.Module):
    def __init__(self, inc, kernel_size, stride=1):
        super().__init__()
        padding = 1
        if kernel_size == 1:
            padding = 0
        # self.conv = nn.Sequential(
        #     nn.Conv2d(inc, inc, kernel_size, stride, padding, groups=inc, bias=False,),
        #     nn.BatchNorm2d(inc),
        # )
        self.conv = conv_bn(inc, inc, kernel_size, stride, padding, inc)

    def forward(self, x):
        return self.conv(x)


class PointWiseConv(nn.Module):
    def __init__(self, inc, outc):
        super().__init__()
        # self.conv = nn.Sequential(
        #     nn.Conv2d(inc, outc, 1, 1, 0, bias=False),
        #     nn.BatchNorm2d(outc),
        # )
        self.conv = conv_bn(inc, outc, 1, 1, 0)

    def forward(self, x):
        return self.conv(x)


class MobileOneBlock(nn.Module):

    def __init__(self, in_channels, out_channels, k,
                 stride=1, dilation=1, padding_mode='zeros', deploy=False, use_se=False):
        super(MobileOneBlock, self).__init__()
        self.deploy = deploy
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.deploy = deploy
        kernel_size = 3
        padding = 1
        assert kernel_size == 3
        assert padding == 1
        self.k = k
        padding_11 = padding - kernel_size // 2

        self.nonlinearity = nn.ReLU()

        if use_se:
            # self.se = SEBlock(out_channels, internal_neurons=out_channels // 16)
            ...
        else:
            self.se = nn.Identity()

        if deploy:
            self.dw_reparam = nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size,
                                        stride=stride,
                                        padding=padding, dilation=dilation, groups=in_channels, bias=True,
                                        padding_mode=padding_mode)
            self.pw_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1,
                                        bias=True)

        else:
            self.dw_bn_layer = nn.BatchNorm2d(in_channels) if out_channels == in_channels and stride == 1 else None
            for k_idx in range(k):
                setattr(self, f'dw_3x3_{k_idx}',
                        DepthWiseConv(in_channels, 3, stride=stride)
                        )
            self.dw_1x1 = DepthWiseConv(in_channels, 1, stride=stride)

            self.pw_bn_layer = nn.BatchNorm2d(in_channels) if out_channels == in_channels and stride == 1 else None
            for k_idx in range(k):
                setattr(self, f'pw_1x1_{k_idx}',
                        PointWiseConv(in_channels, out_channels)
                        )

    def forward(self, inputs):
        if self.deploy:
            x = self.dw_reparam(inputs)
            x = self.nonlinearity(x)
            x = self.pw_reparam(x)
            x = self.nonlinearity(x)
            return x

        if self.dw_bn_layer is None:
            id_out = 0
        else:
            id_out = self.dw_bn_layer(inputs)

        x_conv_3x3 = []
        for k_idx in range(self.k):
            x = getattr(self, f'dw_3x3_{k_idx}')(inputs)
            x_conv_3x3.append(x)
        x_conv_1x1 = self.dw_1x1(inputs)
        x = id_out + x_conv_1x1 + sum(x_conv_3x3)
        x = self.nonlinearity(self.se(x))

        # 1x1 conv
        if self.pw_bn_layer is None:
            id_out = 0
        else:
            id_out = self.pw_bn_layer(x)
        x_conv_1x1 = []
        for k_idx in range(self.k):
            x_conv_1x1.append(getattr(self, f'pw_1x1_{k_idx}')(x))
        x = id_out + sum(x_conv_1x1)
        x = self.nonlinearity(x)
        return x


class MobileOne(nn.Module):
    # MobileOne
    def __init__(self, in_channels, out_channels, n, k,
                 stride=1, dilation=1, padding_mode='zeros', deploy=False, use_se=False):
        super().__init__()
        self.m = nn.Sequential(*[MobileOneBlock(in_channels, out_channels, k, stride, deploy) for _ in range(n)])

    def forward(self, x):
        x = self.m(x)
        return x

common.py

# This file contains modules common to various models
import math

import torch
import torch.nn as nn
from utils.general import non_max_suppression
import torch.nn.functional as F

import torch.nn as nn
import numpy as np
import torch


def conv_bn(in_channels, out_channels, kernel_size, stride, padding, groups=1):
    result = nn.Sequential()
    result.add_module('conv', nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
                                        kernel_size=kernel_size, stride=stride, padding=padding, groups=groups,
                                        bias=False))
    result.add_module('bn', nn.BatchNorm2d(num_features=out_channels))
    return result


class DepthWiseConv(nn.Module):
    def __init__(self, inc, kernel_size, stride=1):
        super().__init__()
        padding = 1
        if kernel_size == 1:
            padding = 0
        # self.conv = nn.Sequential(
        #     nn.Conv2d(inc, inc, kernel_size, stride, padding, groups=inc, bias=False,),
        #     nn.BatchNorm2d(inc),
        # )
        self.conv = conv_bn(inc, inc, kernel_size, stride, padding, inc)

    def forward(self, x):
        return self.conv(x)


class PointWiseConv(nn.Module):
    def __init__(self, inc, outc):
        super().__init__()
        # self.conv = nn.Sequential(
        #     nn.Conv2d(inc, outc, 1, 1, 0, bias=False),
        #     nn.BatchNorm2d(outc),
        # )
        self.conv = conv_bn(inc, outc, 1, 1, 0)

    def forward(self, x):
        return self.conv(x)


class MobileOneBlock(nn.Module):

    def __init__(self, in_channels, out_channels, k,
                 stride=1, dilation=1, padding_mode='zeros', deploy=False, use_se=False):
        super(MobileOneBlock, self).__init__()
        self.deploy = deploy
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.deploy = deploy
        kernel_size = 3
        padding = 1
        assert kernel_size == 3
        assert padding == 1
        self.k = k
        padding_11 = padding - kernel_size // 2

        self.nonlinearity = nn.ReLU()

        if use_se:
            # self.se = SEBlock(out_channels, internal_neurons=out_channels // 16)
            ...
        else:
            self.se = nn.Identity()

        if deploy:
            self.dw_reparam = nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size,
                                        stride=stride,
                                        padding=padding, dilation=dilation, groups=in_channels, bias=True,
                                        padding_mode=padding_mode)
            self.pw_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1,
                                        bias=True)

        else:
            self.dw_bn_layer = nn.BatchNorm2d(in_channels) if out_channels == in_channels and stride == 1 else None
            for k_idx in range(k):
                setattr(self, f'dw_3x3_{k_idx}',
                        DepthWiseConv(in_channels, 3, stride=stride)
                        )
            self.dw_1x1 = DepthWiseConv(in_channels, 1, stride=stride)

            self.pw_bn_layer = nn.BatchNorm2d(in_channels) if out_channels == in_channels and stride == 1 else None
            for k_idx in range(k):
                setattr(self, f'pw_1x1_{k_idx}',
                        PointWiseConv(in_channels, out_channels)
                        )

    def forward(self, inputs):
        if self.deploy:
            x = self.dw_reparam(inputs)
            x = self.nonlinearity(x)
            x = self.pw_reparam(x)
            x = self.nonlinearity(x)
            return x

        if self.dw_bn_layer is None:
            id_out = 0
        else:
            id_out = self.dw_bn_layer(inputs)

        x_conv_3x3 = []
        for k_idx in range(self.k):
            x = getattr(self, f'dw_3x3_{k_idx}')(inputs)
            x_conv_3x3.append(x)
        x_conv_1x1 = self.dw_1x1(inputs)
        x = id_out + x_conv_1x1 + sum(x_conv_3x3)
        x = self.nonlinearity(self.se(x))

        # 1x1 conv
        if self.pw_bn_layer is None:
            id_out = 0
        else:
            id_out = self.pw_bn_layer(x)
        x_conv_1x1 = []
        for k_idx in range(self.k):
            x_conv_1x1.append(getattr(self, f'pw_1x1_{k_idx}')(x))
        x = id_out + sum(x_conv_1x1)
        x = self.nonlinearity(x)
        return x


class MobileOne(nn.Module):
    # MobileOne
    def __init__(self, in_channels, out_channels, n, k,
                 stride=1, dilation=1, padding_mode='zeros', deploy=False, use_se=False):
        super().__init__()
        self.m = nn.Sequential(*[MobileOneBlock(in_channels, out_channels, k, stride, deploy) for _ in range(n)])

    def forward(self, x):
        x = self.m(x)
        return x
#MobileOne

class LayerNorm_s(nn.Module):

    def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.eps = eps
        self.data_format = data_format
        if self.data_format not in ["channels_last", "channels_first"]:
            raise NotImplementedError
        self.normalized_shape = (normalized_shape,)

    def forward(self, x):
        if self.data_format == "channels_last":
            return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        elif self.data_format == "channels_first":
            u = x.mean(1, keepdim=True)
            s = (x - u).pow(2).mean(1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.eps)
            x = self.weight[:, None, None] * x + self.bias[:, None, None]
            return x


class ConvNextBlock(nn.Module):

    def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6):
        super().__init__()
        self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim)  # depthwise conv
        self.norm = LayerNorm_s(dim, eps=1e-6)
        self.pwconv1 = nn.Linear(dim, 4 * dim)
        self.act = nn.GELU()
        self.pwconv2 = nn.Linear(4 * dim, dim)
        self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)),
                                  requires_grad=True) if layer_scale_init_value > 0 else None
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        input = x
        x = self.dwconv(x)
        x = x.permute(0, 2, 3, 1)  # (N, C, H, W) -> (N, H, W, C)
        x = self.norm(x)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.pwconv2(x)
        if self.gamma is not None:
            x = self.gamma * x
        x = x.permute(0, 3, 1, 2)  # (N, H, W, C) -> (N, C, H, W)

        x = input + self.drop_path(x)
        return x


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """

    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path_f(x, self.drop_prob, self.training)


def drop_path_f(x, drop_prob: float = 0., training: bool = False):
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class CNeB(nn.Module):
    # CSP ConvNextBlock with 3 convolutions by iscyy/yoloair
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)
        self.m = nn.Sequential(*(ConvNextBlock(c_) for _ in range(n)))

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
#CONVNEXT BLOCK






def position(H, W, is_cuda=True):
    if is_cuda:
        loc_w = torch.linspace(-1.0, 1.0, W).cuda().unsqueeze(0).repeat(H, 1)
        loc_h = torch.linspace(-1.0, 1.0, H).cuda().unsqueeze(1).repeat(1, W)
    else:
        loc_w = torch.linspace(-1.0, 1.0, W).unsqueeze(0).repeat(H, 1)
        loc_h = torch.linspace(-1.0, 1.0, H).unsqueeze(1).repeat(1, W)
    loc = torch.cat([loc_w.unsqueeze(0), loc_h.unsqueeze(0)], 0).unsqueeze(0)
    return loc


def stride(x, stride):
    b, c, h, w = x.shape
    return x[:, :, ::stride, ::stride]


def init_rate_half(tensor):
    if tensor is not None:
        tensor.data.fill_(0.5)


def init_rate_0(tensor):
    if tensor is not None:
        tensor.data.fill_(0.)


class ACmix(nn.Module):
    def __init__(self, in_planes, out_planes, kernel_att=7, head=4, kernel_conv=3, stride=1, dilation=1):
        super(ACmix, self).__init__()
        self.in_planes = in_planes
        self.out_planes = out_planes
        self.head = head
        self.kernel_att = kernel_att
        self.kernel_conv = kernel_conv
        self.stride = stride
        self.dilation = dilation
        self.rate1 = torch.nn.Parameter(torch.Tensor(1))
        self.rate2 = torch.nn.Parameter(torch.Tensor(1))
        self.head_dim = self.out_planes // self.head

        self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=1)
        self.conv2 = nn.Conv2d(in_planes, out_planes, kernel_size=1)
        self.conv3 = nn.Conv2d(in_planes, out_planes, kernel_size=1)
        self.conv_p = nn.Conv2d(2, self.head_dim, kernel_size=1)

        self.padding_att = (self.dilation * (self.kernel_att - 1) + 1) // 2
        self.pad_att = torch.nn.ReflectionPad2d(self.padding_att)
        self.unfold = nn.Unfold(kernel_size=self.kernel_att, padding=0, stride=self.stride)
        self.softmax = torch.nn.Softmax(dim=1)

        self.fc = nn.Conv2d(3 * self.head, self.kernel_conv * self.kernel_conv, kernel_size=1, bias=False)
        self.dep_conv = nn.Conv2d(self.kernel_conv * self.kernel_conv * self.head_dim, out_planes,
                                  kernel_size=self.kernel_conv, bias=True, groups=self.head_dim, padding=1,
                                  stride=stride)

        self.reset_parameters()

    def reset_parameters(self):
        init_rate_half(self.rate1)
        init_rate_half(self.rate2)
        kernel = torch.zeros(self.kernel_conv * self.kernel_conv, self.kernel_conv, self.kernel_conv)
        for i in range(self.kernel_conv * self.kernel_conv):
            kernel[i, i // self.kernel_conv, i % self.kernel_conv] = 1.
        kernel = kernel.squeeze(0).repeat(self.out_planes, 1, 1, 1)
        self.dep_conv.weight = nn.Parameter(data=kernel, requires_grad=True)
        self.dep_conv.bias = init_rate_0(self.dep_conv.bias)

    def forward(self, x):
        q, k, v = self.conv1(x), self.conv2(x), self.conv3(x)
        scaling = float(self.head_dim) ** -0.5
        b, c, h, w = q.shape
        h_out, w_out = h // self.stride, w // self.stride

        # ### att
        # ## positional encoding
        pe = self.conv_p(position(h, w, x.is_cuda))

        q_att = q.view(b * self.head, self.head_dim, h, w) * scaling
        k_att = k.view(b * self.head, self.head_dim, h, w)
        v_att = v.view(b * self.head, self.head_dim, h, w)

        if self.stride > 1:
            q_att = stride(q_att, self.stride)
            q_pe = stride(pe, self.stride)
        else:
            q_pe = pe

        unfold_k = self.unfold(self.pad_att(k_att)).view(b * self.head, self.head_dim,
                                                         self.kernel_att * self.kernel_att, h_out,
                                                         w_out)  # b*head, head_dim, k_att^2, h_out, w_out
        unfold_rpe = self.unfold(self.pad_att(pe)).view(1, self.head_dim, self.kernel_att * self.kernel_att, h_out,
                                                        w_out)  # 1, head_dim, k_att^2, h_out, w_out

        att = (q_att.unsqueeze(2) * (unfold_k + q_pe.unsqueeze(2) - unfold_rpe)).sum(
            1)  # (b*head, head_dim, 1, h_out, w_out) * (b*head, head_dim, k_att^2, h_out, w_out) -> (b*head, k_att^2, h_out, w_out)
        att = self.softmax(att)

        out_att = self.unfold(self.pad_att(v_att)).view(b * self.head, self.head_dim, self.kernel_att * self.kernel_att,
                                                        h_out, w_out)
        out_att = (att.unsqueeze(1) * out_att).sum(2).view(b, self.out_planes, h_out, w_out)

        ## conv
        f_all = self.fc(torch.cat(
            [q.view(b, self.head, self.head_dim, h * w), k.view(b, self.head, self.head_dim, h * w),
             v.view(b, self.head, self.head_dim, h * w)], 1))
        f_conv = f_all.permute(0, 2, 1, 3).reshape(x.shape[0], -1, x.shape[-2], x.shape[-1])

        out_conv = self.dep_conv(f_conv)

        return self.rate1 * out_att + self.rate2 * out_conv


def autopad(k, p=None):  # kernel, padding
    # Pad to 'same'
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p


def DWConv(c1, c2, k=1, s=1, act=True):
    # Depthwise convolution
    return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)


class h_sigmoid(nn.Module):
    def __init__(self, inplace=True):
        super(h_sigmoid, self).__init__()
        self.relu = nn.ReLU6(inplace=inplace)

    def forward(self, x):
        return self.relu(x + 3) / 6


class h_swish(nn.Module):
    def __init__(self, inplace=True):
        super(h_swish, self).__init__()
        self.sigmoid = h_sigmoid(inplace=inplace)

    def forward(self, x):
        return x * self.sigmoid(x)


class CA(nn.Module):
    # Coordinate Attention for Efficient Mobile Network Design
    '''
        Recent studies on mobile network design have demonstrated the remarkable effectiveness of channel attention (e.g., the Squeeze-and-Excitation attention) for lifting
    model performance, but they generally neglect the positional information, which is important for generating spatially selective attention maps. In this paper, we propose a
    novel attention mechanism for mobile iscyy networks by embedding positional information into channel attention, which
    we call “coordinate attention”. Unlike channel attention
    that transforms a feature tensor to a single feature vector iscyy via 2D global pooling, the coordinate attention factorizes channel attention into two 1D feature encoding
    processes that aggregate features along the two spatial directions, respectively
    '''

    def __init__(self, inp, oup, reduction=32):
        super(CA, self).__init__()

        mip = max(8, inp // reduction)

        self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(mip)
        self.act = h_swish()

        self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)
        self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)

    def forward(self, x):
        identity = x

        n, c, h, w = x.size()
        pool_h = nn.AdaptiveAvgPool2d((h, 1))
        pool_w = nn.AdaptiveAvgPool2d((1, w))
        x_h = pool_h(x)
        x_w = pool_w(x).permute(0, 1, 3, 2)

        y = torch.cat([x_h, x_w], dim=2)
        y = self.conv1(y)
        y = self.bn1(y)
        y = self.act(y)

        x_h, x_w = torch.split(y, [h, w], dim=2)
        x_w = x_w.permute(0, 1, 3, 2)

        a_h = self.conv_h(x_h).sigmoid()
        a_w = self.conv_w(x_w).sigmoid()

        out = identity * a_w * a_h

        return out


class space_to_depth(nn.Module):
    # Changing the dimension of the Tensor
    def __init__(self, dimension=1):
        super().__init__()
        self.d = dimension

    def forward(self, x):
         return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)


class Conv(nn.Module):
    # Standard convolution
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super(Conv, self).__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = nn.Hardswish() if act else nn.Identity()

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

    def fuseforward(self, x):
        return self.act(self.conv(x))


class Bottleneck(nn.Module):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        super(Bottleneck, self).__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))


class BottleneckCSP(nn.Module):
    # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super(BottleneckCSP, self).__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
        self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
        self.cv4 = Conv(2 * c_, c2, 1, 1)
        self.bn = nn.BatchNorm2d(2 * c_)  # applied to cat(cv2, cv3)
        self.act = nn.LeakyReLU(0.1, inplace=True)
        self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])

    def forward(self, x):
        y1 = self.cv3(self.m(self.cv1(x)))
        y2 = self.cv2(x)
        return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))


class SPP(nn.Module):
    # Spatial pyramid pooling layer used in YOLOv3-SPP
    def __init__(self, c1, c2, k=(5, 9, 13)):
        super(SPP, self).__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])

    def forward(self, x):
        x = self.cv1(x)
        return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))


class Focus(nn.Module):
    # Focus wh information into c-space
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super(Focus, self).__init__()
        self.conv = Conv(c1 * 4, c2, k, s, p, g, act)

    def forward(self, x):  # x(b,c,w,h) -> y(b,4c,w/2,h/2)
        return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))


class Concat(nn.Module):
    # Concatenate a list of tensors along dimension
    def __init__(self, dimension=1):
        super(Concat, self).__init__()
        self.d = dimension

    def forward(self, x):
        return torch.cat(x, self.d)


class NMS(nn.Module):
    # Non-Maximum Suppression (NMS) module
    conf = 0.3  # confidence threshold
    iou = 0.6  # IoU threshold
    classes = None  # (optional list) filter by class

    def __init__(self, dimension=1):
        super(NMS, self).__init__()

    def forward(self, x):
        return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes)


class Flatten(nn.Module):
    # Use after nn.AdaptiveAvgPool2d(1) to remove last 2 dimensions
    @staticmethod
    def forward(x):
        return x.view(x.size(0), -1)


class Classify(nn.Module):
    # Classification head, i.e. x(b,c1,20,20) to x(b,c2)
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1):  # ch_in, ch_out, kernel, stride, padding, groups
        super(Classify, self).__init__()
        self.aap = nn.AdaptiveAvgPool2d(1)  # to x(b,c1,1,1)
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)  # to x(b,c2,1,1)
        self.flat = Flatten()

    def forward(self, x):
        z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1)  # cat if list
        return self.flat(self.conv(z))  # flatten to x(b,c2)

yolo.py

import argparse
import logging
import math
import sys
from copy import deepcopy
from pathlib import Path

sys.path.append('./')  # to run '$ python *.py' files in subdirectories
logger = logging.getLogger(__name__)

import torch
import torch.nn as nn

from models.common import Conv, Bottleneck, SPP, DWConv, Focus, BottleneckCSP, Concat, NMS,space_to_depth,CA,ACmix,CNeB,MobileOne
from models.experimental import MixConv2d, CrossConv, C3
from models.gc import CB2D
from utils.general import check_anchor_order, make_divisible, check_file, set_logging
from utils.torch_utils import (
    time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, select_device)


class Detect(nn.Module):
    stride = None  # strides computed during build
    export = False  # onnx export

    def __init__(self, nc=80, anchors=(), ch=()):  # detection layer
        super(Detect, self).__init__()
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.zeros(1)] * self.nl  # init grid
        a = torch.tensor(anchors).float().view(self.nl, -1, 2)
        self.register_buffer('anchors', a)  # shape(nl,na,2)
        self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2))  # shape(nl,1,na,1,1,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv

    def forward(self, x):
        # x = x.copy()  # for profiling
        z = []  # inference output
        self.training |= self.export
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            if not self.training:  # inference
                if self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i] = self._make_grid(nx, ny).to(x[i].device)

                y = x[i].sigmoid()
                y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i]  # xy
                y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                z.append(y.view(bs, -1, self.no))

        return x if self.training else (torch.cat(z, 1), x)

    @staticmethod
    def _make_grid(nx=20, ny=20):
        yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
        return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()


class Model(nn.Module):
    def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None):  # model, input channels, number of classes
        super(Model, self).__init__()
        if isinstance(cfg, dict):
            self.yaml = cfg  # model dict
        else:  # is *.yaml
            import yaml  # for torch hub
            self.yaml_file = Path(cfg).name
            with open(cfg) as f:
                self.yaml = yaml.load(f, Loader=yaml.FullLoader)  # model dict

        # Define model
        if nc and nc != self.yaml['nc']:
            print('Overriding model.yaml nc=%g with nc=%g' % (self.yaml['nc'], nc))
            self.yaml['nc'] = nc  # override yaml value
        self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelist, ch_out
        # print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])

        # Build strides, anchors
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect):
            s = 128  # 2x min stride
            m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])  # forward
            m.anchors /= m.stride.view(-1, 1, 1)
            check_anchor_order(m)
            self.stride = m.stride
            self._initialize_biases()  # only run once
            # print('Strides: %s' % m.stride.tolist())

        # Init weights, biases
        initialize_weights(self)
        self.info()
        print('')

    def forward(self, x, augment=False, profile=False):
        if augment:
            img_size = x.shape[-2:]  # height, width
            s = [1, 0.83, 0.67]  # scales
            f = [None, 3, None]  # flips (2-ud, 3-lr)
            y = []  # outputs
            for si, fi in zip(s, f):
                xi = scale_img(x.flip(fi) if fi else x, si)
                yi = self.forward_once(xi)[0]  # forward
                # cv2.imwrite('img%g.jpg' % s, 255 * xi[0].numpy().transpose((1, 2, 0))[:, :, ::-1])  # save
                yi[..., :4] /= si  # de-scale
                if fi == 2:
                    yi[..., 1] = img_size[0] - yi[..., 1]  # de-flip ud
                elif fi == 3:
                    yi[..., 0] = img_size[1] - yi[..., 0]  # de-flip lr
                y.append(yi)
            return torch.cat(y, 1), None  # augmented inference, train
        else:
            return self.forward_once(x, profile)  # single-scale inference, train

    def forward_once(self, x, profile=False):
        y, dt = [], []  # outputs
        i = 1
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers

            if profile:
                try:
                    import thop
                    o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2  # FLOPS
                except:
                    o = 0
                t = time_synchronized()
                for _ in range(10):
                    _ = m(x)
                dt.append((time_synchronized() - t) * 100)
                print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type))
            x = m(x)  # run
            #print('层数:',i,'特征图大小:',x.shape)
            i+=1
            y.append(x if m.i in self.save else None)  # save output

        if profile:
            print('%.1fms total' % sum(dt))
        return x

    def _initialize_biases(self, cf=None):  # initialize biases into Detect(), cf is class frequency
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
        m = self.model[-1]  # Detect() module
        for mi, s in zip(m.m, m.stride):  # from
            b = mi.bias.view(m.na, -1)  # conv.bias(255) to (3,85)
            with torch.no_grad():
                b[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)
                b[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum())  # cls
            mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)

    def _print_biases(self):
        m = self.model[-1]  # Detect() module
        for mi in m.m:  # from
            b = mi.bias.detach().view(m.na, -1).T  # conv.bias(255) to (3,85)
            print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))

    # def _print_weights(self):
    #     for m in self.model.modules():
    #         if type(m) is Bottleneck:
    #             print('%10.3g' % (m.w.detach().sigmoid() * 2))  # shortcut weights

    def fuse(self):  # fuse model Conv2d() + BatchNorm2d() layers
        print('Fusing layers... ')
        for m in self.model.modules():
            if type(m) is Conv and hasattr(m, 'bn'):
                m._non_persistent_buffers_set = set()  # pytorch 1.6.0 compatability
                m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv
                delattr(m, 'bn')  # remove batchnorm
                m.forward = m.fuseforward  # update forward
        self.info()
        return self

    def add_nms(self):  # fuse model Conv2d() + BatchNorm2d() layers
        if type(self.model[-1]) is not NMS:  # if missing NMS
            print('Adding NMS module... ')
            m = NMS()  # module
            m.f = -1  # from
            m.i = self.model[-1].i + 1  # index
            self.model.add_module(name='%s' % m.i, module=m)  # add
        return self

    def info(self, verbose=False):  # print model information
        model_info(self, verbose)


def parse_model(d, ch):  # model_dict, input_channels(3)
    logger.info('\n%3s%18s%3s%10s  %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
    anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)

    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        m = eval(m) if isinstance(m, str) else m  # eval strings
        for j, a in enumerate(args):
            try:
                args[j] = eval(a) if isinstance(a, str) else a  # eval strings
            except:
                pass

        n = max(round(n * gd), 1) if n > 1 else n  # depth gain
        if m in [Conv, Bottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3]:
            c1, c2 = ch[f], args[0]

            # Normal
            # if i > 0 and args[0] != no:  # channel expansion factor
            #     ex = 1.75  # exponential (default 2.0)
            #     e = math.log(c2 / ch[1]) / math.log(2)
            #     c2 = int(ch[1] * ex ** e)
            # if m != Focus:

            c2 = make_divisible(c2 * gw, 8) if c2 != no else c2

            # Experimental
            # if i > 0 and args[0] != no:  # channel expansion factor
            #     ex = 1 + gw  # exponential (default 2.0)
            #     ch1 = 32  # ch[1]
            #     e = math.log(c2 / ch1) / math.log(2)  # level 1-n
            #     c2 = int(ch1 * ex ** e)
            # if m != Focus:
            #     c2 = make_divisible(c2, 8) if c2 != no else c2

            args = [c1, c2, *args[1:]]
            if m in [BottleneckCSP, C3]:
                args.insert(2, n)
                n = 1
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum([ch[-1 if x == -1 else x + 1] for x in f])
        elif m is Detect:
            args.append([ch[x + 1] for x in f])
            if isinstance(args[1], int):  # number of anchors
                args[1] = [list(range(args[1] * 2))] * len(f)
        elif m is space_to_depth:
            c2 = 4 * ch[f]

        elif m in [CA]:
            c1, c2 = ch[f], args[0]
            if c2 != no:  # if not outputss
                c2 = make_divisible(c2 * gw, 8)
            args = [c1, c2, *args[1:]]
        elif m in [CB2D]:
            c1, c2 = ch[f], args[0]
            if c2 != no:  # if not output
                c2 = make_divisible(c2 * gw, 8)

            args = [c1, c2, *args[1:]]
            if m in [CB2D]:
                args.insert(2, n)  # number of repeats
                n = 1
        elif m in [ACmix]:
            c1, c2 = ch[f], args[0]
            if c2 != no:  # if not output
                c2 = make_divisible(c2 * gw, 8)
            args = [c1, c2, *args[1:]]

        elif m is CNeB:
            c1, c2 = ch[f], args[0]
            if c2 != no:
                c2 = make_divisible(c2 * gw, 8)

            args = [c1, c2, *args[1:]]
            if m is CNeB:
                args.insert(2, n)
                n = 1

        elif m is MobileOne:
            c1, c2 = ch[f], args[0]
            c2 = make_divisible(c2 * gw, 8)
            args = [c1, c2, n, *args[1:]]




        else:
            c2 = ch[f]

        m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args)  # module
        t = str(m)[8:-2].replace('__main__.', '')  # module type
        np = sum([x.numel() for x in m_.parameters()])  # number params
        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
        logger.info('%3s%18s%3s%10.0f  %-40s%-30s' % (i, f, n, np, t, args))  # print
        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        ch.append(c2)
    return nn.Sequential(*layers), sorted(save)


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    opt = parser.parse_args()
    opt.cfg = check_file(opt.cfg)  # check file
    set_logging()
    device = select_device(opt.device)

    # Create model
    model = Model(opt.cfg).to(device)
    model.train()

    # Profile
    # img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
    # y = model(img, profile=True)

    # ONNX export
    # model.model[-1].export = True
    # torch.onnx.export(model, img, opt.cfg.replace('.yaml', '.onnx'), verbose=True, opset_version=11)

    # Tensorboard
    # from torch.utils.tensorboard import SummaryWriter
    # tb_writer = SummaryWriter()
    # print("Run 'tensorboard --logdir=models/runs' to view tensorboard at http://localhost:6006/")
    # tb_writer.add_graph(model.model, img)  # add model to tensorboard
    # tb_writer.add_image('test', img[0], dataformats='CWH')  # add model to tensorboard

yolov5s_mobileone.yaml

# parameters
nc: 2  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple

# anchors
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Focus, [64, 3]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, MobileOne, [128,4,1]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 9, MobileOne, [256,4,1]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, MobileOne, [512,4,1]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 1, SPP, [1024, [5, 9, 13]]],
   [-1, 3, MobileOne, [1024, 4,1]],  # 9
  ]

# YOLOv5 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, BottleneckCSP, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, BottleneckCSP, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, BottleneckCSP, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, BottleneckCSP, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

参考资料

论文下载

https://arxiv.org/pdf/2206.04040.pdf

代码地址

GitHub - apple/ml-mobileone: This repository contains the official implementation of the research paper, "An Improved One millisecond Mobile Backbone".

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/385289.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

《剑指Offer》笔记题解思路技巧优化 Java版本——新版leetcode_Part_2

《剑指Offer》笔记&题解&思路&技巧&优化_Part_2 &#x1f60d;&#x1f60d;&#x1f60d; 相知&#x1f64c;&#x1f64c;&#x1f64c; 相识&#x1f353;&#x1f353;&#x1f353;广度优先搜索BFS&#x1f353;&#x1f353;&#x1f353;深度优先搜索DF…

九、java 继承

文章目录 java 继承3.1 根父类Object3.2 方法重写3.3 继承案例&#xff1a;图形类继承体系3.4 继承的细节3.4.1 构造方法3.4.2 重名与静态绑定3.4.3 重载和重写3.4.4 父子类型转换3.4.5 继承访问权限protected3.4.6 可见性重写3.4.7 防止继承final 3.5 继承是把双刃剑3.5.1 继承…

70.SpringMVC怎么和AJAX相互调用的?

70.SpringMVC怎么和AJAX相互调用的&#xff1f; &#xff08;1&#xff09;加入Jackson.jar&#xff08;2&#xff09;在配置文件中配置json的消息转换器.(jackson不需要该配置HttpMessageConverter&#xff09; <!‐‐它就帮我们配置了默认json映射‐‐> <mvc:anno…

Netty应用——实例-群聊系统(十六)

编写一个Netty群聊系统&#xff0c;实现服务器端和客户端之间的数据简单通讯 (非阻塞)实现多人群聊服务器端:可以监测用户上线&#xff0c;离线&#xff0c;并实现消息转发功能客户端:通过channel可以无阳塞发送消息给其它所有用户&#xff0c;同时可以接受其它用户发送的消息(…

哈夫曼树的学习以及实践

哈夫曼树 哈夫曼树的基本了解哈夫曼树的基本概念创建霍夫曼树的思路编码构建的思路代码实现创建HuffmanTree结点初始化HuffmanTree创建霍夫曼树霍夫曼树编码 哈夫曼树的基本了解 给定 n 个 权值 作为 n 个 叶子节点&#xff0c;构造一颗二叉树&#xff0c;若该树的 带权路径长…

C语言第二十三弹---指针(七)

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】 指针 1、sizeof和strlen的对比 1.1、sizeof 1.2、strlen 1.3、sizeof 和 strlen的对比 2、数组和指针笔试题解析 2.1、⼀维数组 2.2、二维数组 总结 1、si…

C语言每日一题(56)平衡二叉树

力扣网 110 平衡二叉树 题目描述 给定一个二叉树&#xff0c;判断它是否是高度平衡的二叉树。 本题中&#xff0c;一棵高度平衡二叉树定义为&#xff1a; 一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1 。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,…

牛客错题整理——C语言(实时更新)

1.以下程序的运行结果是&#xff08;&#xff09; #include <stdio.h> int main() { int sum, pad,pAd; sum pad 5; pAd sum, pAd, pad; printf("%d\n",pAd); }答案为7 由于赋值运算符的优先级高于逗号表达式&#xff0c;因此pAd sum, pAd, pad;等价于(…

Linux系统之部署File Browser文件管理系统

Linux系统之部署File Browser文件管理系统 一、File Browser介绍1.1 File Browser简介1.2 File Browser功能1.3 File Browser使用场景 二、本地环境介绍2.1 本地环境规划2.2 本次实践介绍 三、检查本地环境3.1 检查本地操作系统版本3.2 检查系统内核版本 四、安装File Browser4…

Linux_线程

线程与进程 多级页表 线程控制 线程互斥 线程同步 生产者消费者模型 常见概念 下面选取32位系统举例。 一.线程与进程 上图是曾经我们认为进程所占用的资源的集合。 1.1 线程概念 线程是一个执行分支&#xff0c;执行粒度比进程细&#xff0c;调度成本比进程低线程是cpu…

SpringCloud-Eureka服务注册中心测试实践

5. Eureka服务注册中心 5.1 什么是Eureka Netflix在涉及Eureka时&#xff0c;遵循的就是API原则.Eureka是Netflix的有个子模块&#xff0c;也是核心模块之一。Eureka是基于REST的服务&#xff0c;用于定位服务&#xff0c;以实现云端中间件层服务发现和故障转移&#xff0c;服…

fast.ai 深度学习笔记(六)

深度学习 2&#xff1a;第 2 部分第 12 课 原文&#xff1a;medium.com/hiromi_suenaga/deep-learning-2-part-2-lesson-12-215dfbf04a94 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 来自 fast.ai 课程的个人笔记。随着我继续复习课程以“真正”理解它&#xff0c;…

Java 基于微信小程序的私家车位共享系统

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…

LC 987. 二叉树的垂序遍历

987. 二叉树的垂序遍历 难度 : 困难 题目大意&#xff1a; 给你二叉树的根结点 root &#xff0c;请你设计算法计算二叉树的 垂序遍历 序列。 对位于 (row, col) 的每个结点而言&#xff0c;其左右子结点分别位于 (row 1, col - 1) 和 (row 1, col 1) 。树的根结点位于 …

爬虫2—用爬虫爬取壁纸(想爬多少张爬多少张)

先看效果图&#xff1a; 我这个是爬了三页的壁纸60张。 上代码了。 import requests import re import os from bs4 import BeautifulSoupcount0 img_path "./壁纸图片/"#指定保存地址 if not os.path.exists(img_path):os.mkdir(img_path) headers{ "User-Ag…

【STL】string的模拟实现

string类的模拟实现 一、接口函数总览二、默认成员函数1、构造函数2、拷贝构造函数&#xff08;1&#xff09;写法一&#xff1a;传统写法&#xff08;2&#xff09;写法二&#xff1a;现代写法 3、赋值运算符重载函数&#xff08;1&#xff09;写法一&#xff1a;传统写法&…

【开源】JAVA+Vue.js实现天然气工程运维系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 系统角色分类2.2 核心功能2.2.1 流程 12.2.2 流程 22.3 各角色功能2.3.1 系统管理员功能2.3.2 用户服务部功能2.3.3 分公司&#xff08;施工单位&#xff09;功能2.3.3.1 技术员角色功能2.3.3.2 材料员角色功能 2.3.4 安…

东风联手华为打造首款SUV,车长超5米,配纯电和增程双动力系统

在上个月&#xff08;2024年1月份&#xff09;&#xff0c;东风汽车和华为达成了战略合作计划&#xff0c;两家品牌将联手打造全新的汽车品牌——奕派汽车&#xff0c;而目前我们从相关渠道获悉&#xff0c;其首款SUV车型已经获得了实拍亮相&#xff0c;而新车的内部代号为S59&…

MySQL篇----第十四篇

系列文章目录 文章目录 系列文章目录前言一、MySQL 数据库作发布系统的存储,一天五万条以上的增量,预计运维三年,怎么优化?二、锁的优化策略三、索引的底层实现原理和优化四、什么情况下设置了索引但无法使用前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽…

Java使用opencsv完成对csv批量操作

文章目录 前言一、maven二、造数三、代码部分1.OpenCsvController2.OpenCsvUtil3.StudentInfo4.CodeToValue 三、效果展示1.download2.upload 总结 前言 csv文件是不同于excel文件的另一种文件&#xff0c;常常以,作为分隔符&#xff0c;本篇将通过JavaBean的形式完成对csv文件…