【大厂AI课学习笔记】【1.5 AI技术领域】(8)文本分类

8,9,10,将分别讨论自然语言处理领域的3个重要场景。

自然语言处理,Natual Language Processing,NLP,包括自然语言识别和自然语言生成。

用途是从非结构化的文本数据中,发掘洞见,并访问这些信息,生成新的理解。

由于语言是人类思维的证明,因此自然语言处理是人工智能的最高境界,被誉为“人工智能皇冠上的明珠”。

文本分类,Text Categorization,将文本按照一定的分类体系或者标准自动的分类打标签。

应用场景主要有:

  • 新闻分类
  • 邮件自动回复
  • 内容审核之广告过滤
  • 内容审核之不当言论过滤

 

下面我们来了解更多关于文本分类的知识:

文本分类是自然语言处理(NLP)领域中的一个重要任务,它指的是将文本数据自动分配到预定义的类别中的过程。这些类别可以是新闻的主题、评论的情感倾向、邮件的垃圾/非垃圾标记等。文本分类的目的是为了组织和理解大量的文本数据,以便进行信息检索、情感分析、主题识别等后续任务。

关键技术

  1. 特征提取:将文本转换为计算机能够理解的数值形式。传统的特征提取方法包括词袋模型(Bag of Words)、TF-IDF等。近年来,基于深度学习的方法如词嵌入(Word Embeddings,如Word2Vec、GloVe)、上下文嵌入(Contextual Embeddings,如BERT、GPT等)成为主流。

  2. 文本表示:将提取的特征转换成适合机器学习模型的输入形式。这可以通过向量空间模型(VSM)、稀疏表示、密集表示(如神经网络中的嵌入层)等方式实现。

  3. 分类算法:应用机器学习或深度学习算法对文本进行分类。常见的机器学习算法包括朴素贝叶斯、逻辑回归、支持向量机(SVM)、决策树等。深度学习算法则包括卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)、Transformer等。

  4. 模型评估与优化:使用准确率、精确率、召回率、F1分数等指标对分类模型进行评估,并通过调整模型参数、采用更复杂的网络结构、引入正则化等技术进行优化。

  5. 预训练与迁移学习:在大规模语料库上预训练模型,然后将其迁移到特定任务的文本分类中,以提高性能并减少对数据量的依赖。

  6. 多模态融合:在文本分类中结合其他模态的信息,如图像、音频等,以提高分类的准确性。

应用场景

  1. 情感分析:分析评论、社交媒体帖子等的情感倾向(正面、负面、中性)。

  2. 垃圾邮件检测:自动识别和过滤垃圾邮件。

  3. 主题分类:对新闻文章、博客帖子等进行主题分类,如体育、政治、娱乐等。

  4. 语言翻译:在机器翻译中确定源文本所属的领域或主题,以便选择更合适的翻译模型。

  5. 问答系统:在问答系统中确定问题的类型,以便更准确地检索答案。

  6. 文本推荐:根据用户的历史阅读和偏好,推荐相关主题的文本内容。

  7. 社交媒体监控:监控社交媒体上的不当言论、恶意行为等。

主流的商业化产品

  1. Google Cloud Natural Language API:提供情感分析、实体识别、语法分析等功能,支持多种语言。

  2. Amazon Comprehend:亚马逊提供的NLP服务,包括文本分类、情感分析、主题建模等。

  3. IBM Watson Natural Language Understanding:IBM的NLP产品,提供文本分类、情感分析、关键词提取等功能。

  4. Microsoft Azure Cognitive Service for Language:微软提供的语言理解服务,包括文本分类、命名实体识别、语言翻译等。

  5. Spacy:开源的NLP库,提供多种语言的文本处理功能,包括文本分类。

  6. Hugging Face Transformers:开源的预训练模型库,包括BERT、GPT等,可用于文本分类任务。

文本分类的进一步分类

文本分类可以根据不同的标准进一步细分为多个子任务。以下是一些常见的分类及其定义、区别和关键技术实现路径:

情感分类

定义:情感分类旨在识别文本中所表达的情感倾向,如正面、负面或中性。它广泛应用于产品评论、社交媒体分析和市场调研等领域。

关键技术:情感词典、情感特征提取(如基于规则的方法、基于监督学习的方法)、深度学习模型(如CNN、RNN、LSTM等)、迁移学习。

实现路径:首先,收集并标注情感倾向的文本数据。然后,提取情感特征,可以使用基于规则的方法(如情感词典匹配)或监督学习方法(如SVM、朴素贝叶斯等)。最后,训练一个分类器来识别新文本的情感倾向。近年来,深度学习模型在情感分类任务上取得了显著成果,特别是基于Transformer的模型如BERT和GPT。

主题分类

定义:主题分类旨在将文本分配给预定义的主题类别,如新闻分类(体育、政治、娱乐等)或学术论文分类(计算机科学、物理学、生物学等)。

关键技术:主题模型(如潜在狄利克雷分布LDA)、关键词提取、文本聚类、深度学习分类模型。

实现路径:首先,确定主题类别的数量和范围。然后,使用主题模型或关键词提取方法来识别文本中的主题相关特征。接下来,可以选择使用传统的文本聚类方法(如K-means、层次聚类等)或深度学习分类模型(如CNN、RNN等)来训练分类器。在训练过程中,可以使用诸如TF-IDF等特征加权技术来提高性能。最后,评估模型的性能并进行优化。

多标签分类

定义:多标签分类是指一个文本实例可以同时属于多个类别。与单标签分类不同,多标签分类需要考虑类别之间的相关性和依赖性。

关键技术:标签相关性建模、多标签分类算法(如二元关联、分类器链等)、深度学习模型(如多标签CNN、RNN等)。

实现路径:首先,收集并标注具有多个类别的文本数据。然后,提取文本特征并使用多标签分类算法或深度学习模型来训练分类器。在训练过程中,需要特别注意标签之间的相关性建模,以避免标签之间的冗余和冲突。最后,评估模型的性能并进行优化,可以使用诸如汉明损失、微平均/宏平均F1分数等指标来衡量多标签分类的性能。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/380412.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

电脑文件误删除怎么办?8个恢复软件解决电脑磁盘数据可能的误删

您是否刚刚发现您的电脑磁盘数据丢失了?不要绝望!无论分区是否损坏、意外格式化或配置错误,存储在其上的文件都不一定会丢失到数字深渊。 我们已经卷起袖子,深入研究电脑分区恢复软件的广阔领域,为您带来一系列最有效…

Qt安装配置教程windows版(包括:Qt5.8.0版本,Qt5.12,Qt5.14版本下载安装教程)(亲测可行)

目录 Qt5.8.0版本安装教程Qt5.8.0版本下载安装 Qt5.12.2版本安装教程下载安装 Qt 5.14.2安装教程下载安装和创建项目 参考视频 QT为嵌入式系统提供了大量的库和可重用组件。 WPS Office,咪咕音乐,Linux桌面环境等都是QT开发的。 Qt5.8.0版本安装教程 Q…

排序算法---堆排序

原创不易,转载请注明出处。欢迎点赞收藏~ 堆排序(Heap Sort)是一种基于二叉堆数据结构的排序算法。它将待排序的元素构建成一个最大堆(或最小堆),然后逐步将堆顶元素与堆的最后一个元素交换位置&#xff0c…

javaEE - 22( 5000 字 Tomcat 和 HTTP 协议入门 -3)

一:Tomcat 1.1 Tomcat 是什么 谈到 “汤姆猫”, 大家可能更多想到的是大名鼎鼎的这个: 事实上, Java 世界中的 “汤姆猫” 完全不是一回事, 但是同样大名鼎鼎. Tomcat 是一个 HTTP 服务器. 前面我们已经学习了 HTTP 协议, 知道了 HTTP 协议就是 HTTP 客户端和…

Java编程构建高效二手交易平台

✍✍计算机编程指导师 ⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流! ⚡⚡ Java实战 |…

物资捐赠管理系统

文章目录 物资捐赠管理系统一、项目演示二、项目介绍三、系统部分功能截图四、部分代码展示五、底部获取项目(9.9¥带走) 物资捐赠管理系统 一、项目演示 爱心捐赠系统 二、项目介绍 基于springboot的爱心捐赠管理系统 开发语言&#xff1a…

APEX开发过程中需要注意的小细节2

开发时遇到首次获取租户号失败的问题 以为是触发顺序问题,所以设置两个动态操作,一个事件是“更改”,另一个是“单击”, 但还是没有解决, 后来终于找到解决方法:在校验前执行取值 果然成功执行! 动态查询年…

获取视频帧图片

在实现了minio文件上传的基础上进行操作 一、编写pom <dependency><groupId>org.jcodec</groupId><artifactId>jcodec</artifactId><version>0.2.5</version> </dependency> <dependency><groupId>org.jcodec<…

30岁还一事无成,怎么办?

前些日子&#xff0c;知乎有一个话题&#xff0c;特别火。 原话是&#xff1a;30岁&#xff0c;如果你还没当上管理层&#xff0c;或者在某个领域取得成就&#xff0c;那你一辈子基本也就这样了。 这句话一出&#xff0c;戳中了许多人的软肋&#xff0c;一时间群情哗然。 理由是…

Vue.js2+Cesium1.103.0 十五、绘制视锥,并可实时调整视锥姿态

Vue.js2Cesium1.103.0 十五、绘制视锥&#xff0c;并可实时调整视锥姿态 Demo <template><divid"cesium-container"style"width: 100%; height: 100%;"/> </template><script> /* eslint-disable no-undef */ /* eslint-disable …

【NICN】探索牛客之求阶乘

1.题目描述 递归和非递归分别实现求n的阶乘&#xff08;不考虑溢出的问题&#xff09; 2.代码解题 2.1递归 递归思想&#xff1a; Fac(N) 1*2*3*……*N递归方式实现&#xff1a;1 N < 1 Fac(N)Fac(N-1)*N N > 2 long long Fac(int N) {if(N < 1)return 1;retu…

(每日持续更新)信息系统项目管理(第四版)(高级项目管理)考试重点整理第10章 项目进度管理(四)

博主2023年11月通过了信息系统项目管理的考试&#xff0c;考试过程中发现考试的内容全部是教材中的内容&#xff0c;非常符合我学习的思路&#xff0c;因此博主想通过该平台把自己学习过程中的经验和教材博主认为重要的知识点分享给大家&#xff0c;希望更多的人能够通过考试&a…

力扣hot100 -- 双指针

目录 &#x1f382;移动零 &#x1f319;盛最多水的容器 &#x1f33c;三数之和 &#x1f33c;接雨水 前缀和 辅助数组 双指针 单调栈 &#x1f382;移动零 283. 移动零 - 力扣&#xff08;LeetCode&#xff09; 关于swap #include <iostream> #include <vec…

Get Ready!这些 ALVA 应用即将上线 Vision Pro!

日前&#xff0c;苹果 Vision Pro 正式在美国上市&#xff0c;应用商店首批上线超过 600 款应用程序&#xff0c;出色的显示效果和交互体验&#xff0c;为更多应用提供了全新打开方式。 *图源&#xff1a;Apple 对此&#xff0c;作为全球领先的空间计算技术平台供应商&#xff…

1-3 动手学深度学习v2-线性回归的从零开始实现-笔记

手动创建训练数据集 根据带有噪声的线性模型构造一个人造数据集。我们使用线性模型参数 w [ 2 , − 3.4 ] T \pmb{w} [2,-3.4]^{T} w[2,−3.4]T、 b 4.2 b 4.2 b4.2和噪声项 ϵ \epsilon ϵ生成数据集及其标签&#xff1a; y X w b ϵ \pmb{y} \pmb{Xw}b\epsilon yXw…

Elasticsearch(二)

1、核心概念 1.1、索引&#xff08;Index&#xff09; 一个索引就是一个拥有几分相似特征的文档的集合。比如说&#xff0c;你可以有一个客户数据的索引&#xff0c;另一个产品目录的索引&#xff0c;还有一个订单数据的索引。一个索引由一个名字来标识&#xff08;必须全部是…

【开源】基于JAVA+Vue+SpringBoot的智慧社区业务综合平台

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 业务类型模块2.2 基础业务模块2.3 预约业务模块2.4 反馈管理模块2.5 社区新闻模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 业务类型表3.2.2 基础业务表3.2.3 预约业务表3.2.4 反馈表3.2.5 社区新闻表 四、系统展…

【51单片机】烧写教程:将代码下载到单片机中(图示&解析)

前言 大家好吖&#xff0c;欢迎来到 YY 滴单片机系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过单片机的老铁 这是LCD基本实验中的一部分&#xff0c;完整实验传送门如下&#xff1a;传送门 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是…

[office] excel表格怎么绘制股票的CCI指标- #媒体#学习方法#笔记

excel表格怎么绘制股票的CCI指标? excel表格怎么绘制股票的CCI指标&#xff1f;excel表格中想要绘制一个股票cci指标&#xff0c;该怎么绘制呢&#xff1f;下面我们就来看看详细的教程&#xff0c;需要的朋友可以参考下 CCI指标是一种在股票&#xff0c;贵金属&#xff0c;货…

HARRYPOTTER: FAWKES

攻击机 192.168.223.128 目标机192.168.223.143 主机发现 nmap -sP 192.168.223.0/24 端口扫描 nmap -sV -p- -A 192.168.223.143 开启了21 22 80 2222 9898 五个端口&#xff0c;其中21端口可以匿名FTP登录&#xff0c;好像有点说法,百度搜索一下发现可以用anonymous登录…