〖码银送书第三期〗《Python机器学习:基于PyTorch和Scikit-Learn》

前言

近年来,机器学习方法凭借其理解海量数据和自主决策的能力,已在医疗保健、 机器人、生物学、物理学、大众消费和互联网服务等行业得到了广泛的应用。自从AlexNet模型在2012年ImageNet大赛被提出以来,机器学习和深度学习迅猛发展,取得了一个又一个里程碑式的成就,深刻地影响了工业界、学术界和人们的生活。

如今,机器学习、深度学习、人工智能已经成为信息领域最热门的研究方向,在就业市场这些领域的工作也非常吸引人。科学的巨大飞跃通常来自精彩的想法和易用的工具,机器学习也不例外。

在实践中应用机器学习需要理论和工具的结合。对于机器学习的入门读者而言, 从理解原理概念到确定要安装的软件包都有一定的难度。许多在最开始尝试机器学习的时候,会发现理解一个算法在干什么真的非常难。不仅仅是因为算法里各种繁杂的数学理论和难懂的符号,没有实际的例子,光靠定义和推导来了解一个算法实在是很无聊。就连网络上的相关的指导材料,能找到的通常都是各种公式以及晦涩难懂的解释,很少有人能够细致的将所有细节加以说明。

54137a24a05f4a56b503896b931dd732.jpg

因此,《Python机器学习:基于PyTorch和Scikit-Learn》这本书的定位是把机器学习理论和工程实践结合起来,从而降低读者的阅读门槛。从数据驱动方法的基础知识到最新的深度学习框架,本书每一章都提供了机器学习代码示例,用于解决实际应用中的机器学习问题。

内容简介

本书是一本全面介绍在PyTorch环境下学习机器学习和深度学习的综合指南,可以作为初学者的入门教程,也可以作为读者开发机器学习项目时的参考书。

本书讲解清晰、示例生动,深入介绍了机器学习方法的基础知识,不仅提供了构建机器学习模型的说明,而且提供了构建机器学习模型和解决实际问题的基本准则。本书添加了基于PyTorch的深度学习内容,介绍了新版Scikit-Learn。本书涵盖了多种用于文本和图像分类的机器学习与深度学习方法,介绍了用于生成新数据的生成对抗网络(GAN)和用于训练智能体的强化学习。最后,本书还介绍了深度学习的新动态,包括图神经网络和用于自然语言处理(NLP)的大型transformer。无论是机器学习入门新手,还是计划跟踪机器学习进展的研发人员,都可以将本书作为使用Python进行机器学习的不二之选。

学完本书,你将能够:

  • 探索机器从数据中“学习”的框架、模型和方法。

  • 使用Scikit-Learn实现机器学习,使用PyTorch实现深度学习。

  • 训练机器学习分类器分类图像、文本等数据。

  • 构建和训练神经网络、transformer及图神经网络。

  • 探索评估和优化模型的最佳方法。

  • 使用回归分析预测连续目标结果。

  • 使用情感分析深入地挖掘文本和社交媒体数据。

作者简介

塞巴斯蒂安·拉施卡(Sebastian Raschka)
获密歇根州立大学博士学位,现在是威斯康星-麦迪逊大学统计学助理教授,从事机器学习和深度学习研究。他的研究方向是数据受限的小样本学习和构建预测有序目标值的深度神经网络。他还是一位开源贡献者,担任Grid.ai的首席AI教育家,热衷于传播机器学习和AI领域知识。
刘玉溪(海登)[ Yuxi (Hayden) Liu ]
在谷歌公司担任机器学习软件工程师,曾担任机器学习科学家。他是一系列机器学习书籍的作者。他的第一本书Python Machine Learning By Example在2017年和2018年亚马逊同类产品中排名第一,已被翻译成多种语言。
瓦希德·米尔贾利利(Vahid Mirjalili)
获密歇根州立大学机械工程和计算机科学双博士学位,是一名专注于计算机视觉和深度学习的科研工作者。

作者Sebastian Raschka很擅长用易于理解的方式解释复杂的方法和概念。随着深度学习革命深入到各个领域,Sebastian Raschka和他的团队不断升级、完善书的内容,陆续出版了第2版和第3版。本书在前3个版本的基础上新增了某些章节,包含了PyTorch相关的内容,覆盖了Transformer和图神经网络。这些是目前深度学习领域的前沿方法,在过去两年中席卷了文本理解和分子结构等领域。

作者拥有专业知识和解决实际问题的经验,因此出色地平衡了书中的理论知识和动手实践内容。Sebastian Raschka和Vahid Mirjalili在计算机视觉和计算生物学领域拥有丰富的科研经验。Yuxi Liu擅长解决机器学习领域的实际问题,例如将机器学习方法用于事件预测、推荐系统等。本书的作者都对教育有着满腔热忱,他们用浅显易懂的语言编写了本书以满足读者的需求。

ce2e09f4ac114f2b89d2b1d764cb022e.png

  • 本次送书三本
  • 活动时间:截止到2023-07-19
  • 参与方式:关注博主、点赞、收藏并评论“使用机器学习方法解决实际问题”
  • 阅读量过两千加一本

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/36978.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

WebDAV之π-Disk派盘 + PDF Expert

PDF Expert 支持WebDAV方式连接π-Disk派盘。 PDF Expert是一款macOS上的办公软件,它具有专业的PDF编辑功能,可以快速从邮件、网页支持PDF打开,支持用户进行阅读、批注等功能,用户可以直接在PDF上进行编辑文字图片,表单文档、创建笔记、添加书单等自定义使用,大大提高工…

C国演义 [第五章]

第五章 子集题目理解步骤树形结构递归函数递归结束的条件单层逻辑 代码 子集II题目理解步骤树形结构递归函数递归结束的条件单层逻辑 代码 子集 力扣链接 给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的子集(幂集)。…

HarmonyOS/OpenHarmony应用开发-程序包多HAP机制(上)

一、多HAP机制设计目标 方便开发者模块化的管理应用,好的应用一般都是模块化管理,模块之间属于松耦合关系。多HAP方便了开发者将业务划分成多个模块,每个模块放到独立的HAP中。例如支付类应用,有统一的主界面,主界面管…

Windows mingw64 最简易 安装配置

其实挺简单一件事 很多教程都搞复杂了 自己写一个 只需要两步 1. 下载压缩包并解压 2. 配置环境变量 (1). GitHub 下载地址 Releases niXman/mingw-builds-binaries GitHub 如果GitHub下载太慢可以来这里加速 或者用地址2 GitHub Proxy 代理加速 (ghproxy.com) (2). 下…

学无止境·MySQL⑥(数据库备份和还原)

数据库备份和还原 备份和还原练习1、创建库和表2、使用mysqldump命令备份数据库中的所有表3、备份booksDB数据库中的books表4、使用mysqldump备份booksDB和test数据库5、使用mysqldump备份服务器中的所有数据库6、使用mysql命令还原第二题导出的book表7、进入数据库使用source命…

Rainbond开源

Rainbond的 Gateway API 插件制作实践 Gateway API 作为新一代的流量管理标准,对原有 Ingress 的扩展不规范、移植性差等问题做出了改进。从兼容K8s生态和优化网关体验出发,Rainbond 支持以插件的形式扩展平台网关能力,目前已经有多家社区提供…

领域知识图谱的医生推荐系统:利用BERT+CRF+BiLSTM的医疗实体识别,建立医学知识图谱,建立知识问答系统

项目设计集合(人工智能方向):助力新人快速实战掌握技能、自主完成项目设计升级,提升自身的硬实力(不仅限NLP、知识图谱、计算机视觉等领域):汇总有意义的项目设计集合,助力新人快速实…

DevOps基础服务1——版本控制gitlab

文章目录 一、基本了解1.1 安装git客户端1.2 git命令1.2.1 本地仓库1.2.2 远程仓库 二、安装gitlab三、功能管理3.1 创建账号3.2 用户注册授权通知功能3.3 创建项目远程库3.4 ssh设置3.5 克隆远程库项目到本地3.6 上传本地项目代码到远程库3.7 授权用户查看项目权限 一、基本了…

electron+vue3全家桶+vite项目搭建【21】自定义无边框窗口拖拽移动

文章目录 引入实现思路实现步骤1.主进程监听窗口移动2.通信工具补充ipc调用3.渲染进程封装通用拖拽组件 测试 引入 如果你尝试过透明窗口,并控制透明部分事件击穿,就会发现使用 drag属性样式去控制窗口拖拽会导致点击事件失效,并且带drag属性…

陌陌聊天数据分析 (一)

陌陌聊天数据分析(一) 目标 基于Hadoop和Hive实现聊天数据统计分析,构建聊天数据分析报表 需求 统计今日总消息量统计今日每小时消息量,发送和接收用户数量统计今日各地区发送消息数据量统计今日发送消息和接收消息用户数统计…

机器学习 day25(softmax在神经网络模型上的应用,提高数据精度的方法)

输出层采用softmax 在识别手写数字的模型中,预测y只有两个结果,所以输出层采用sigmoid激活函数且只有一个神经元。若预测y有10个结果(0-9),该模型的前向传播计算方式与识别数字的模型完全相同,即隐藏层的…

符号化的正确姿势

GUI方式 将 .ips crash report 文件拖放到 Xcode > Window > Devices and Simulators > View Device Logs中, 然后导出 .crash 符号化文件. 使用条件: crash report 对应的 Archive 包是在本机构建的 symbolicatecrash symbolicatecrash 是一个 exec (可执行文件), …

Stepper, Slider 的使用

1. Stepper 步进器的使用 1.1 实现 /// 步进器 /加减控件 struct StepperBootcamp: View {State var stepperValue: Int 10State var widthIncrement: CGFloat 0var body: some View {VStack {Stepper("Stepper: \(stepperValue)", value: $stepperValue).padding…

【MATLAB第53期】基于MATLAB的TSK模糊神经网络时间序列预测模型,含短期预测未来功能

【MATLAB第53期】基于MATLAB的TSK模糊神经网络时间序列预测模型,含短期预测未来功能 一、效果展示 二、数据设置 数据采用一列数据滑动窗口设置为5 ,可自行设置70%训练30%测试预测未来值为10 ,可自行设置,控制10以内 三、模型…

Spring MVC相关注解运用 —— 中篇

目录 一、RESTful风格支持 1.1 RESTful风格介绍 1.2 postman使用 二、PathVariable 2.1 实例程序 2.2 测试结果 三、PostMapping、GetMapping、PutMapping、DeleteMapping 四、HiddenHttpMethodFilter 4.1 在web.xml配置过滤器 4.2 控制器方法 4.3 JSP页面 4.4 测…

论文笔记--SentEval: An Evaluation Toolkit for Universal Sentence Representations

论文笔记--SentEval: An Evaluation Toolkit for Universal Sentence Representations 1. 文章简介2. 文章概括3 文章重点技术3.1 evaluation pipeline3.2 使用 4. 代码4.1 数据下载4.2 句子嵌入4.3 句子嵌入评估 5. 文章亮点6. 原文传送门7. References 1. 文章简介 标题&…

96、基于STM32单片机的温湿度DHT11 烟雾火灾报警器蓝牙物联网APP远程控制设计(程序+原理图+任务书+参考论文+开题报告+流程图+元器件清单等)

单片机及温湿度、烟雾传感器是烟雾报警器系统的两大核心。单片机好比一个桥梁,联系着传感器和报警电路设备。近几年来,单片机已逐步深入应用到工农业生产各部门及人们生活的各个方面。各种类型的单片机也根据社会的需求而开发出来。单片机是器件级计算机…

Redis - 附近商铺、用户签到、UV统计

文章目录 附近商铺、用户签到、UV统计一、附近商铺1.1 GEO数据结构1.2 导入店铺数据到GEO1.3 实现附近商户功能 二、用户签到2.1 BitMap2.2 签到功能2.3 统计连续签到2.3.1 分析2.3.2 代码实现 三、UV统计3.1 HyperLogLog用法3.2 测试百万数据的统计 附近商铺、用户签到、UV统计…

LRU 缓存

题目链接 LRU 缓存 题目描述 注意点 如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字函数 get 和 put 必须以 O(1) 的平均时间复杂度运行 解答思路 如果想以O(1)的速度进行get,则需要将对应的key、value存到map中如果想…

李子转债上市价格预测

李子转债 基本信息 转债名称:李子转债,评级:AA,发行规模:6.0亿元。 正股名称:李子园,今日收盘价:18.06元,转股价格:19.47元。 当前转股价值 转债面值 / 转股…