陌陌聊天数据分析(一)
目标
- 基于Hadoop和Hive实现聊天数据统计分析,构建聊天数据分析报表
需求
- 统计今日总消息量
- 统计今日每小时消息量,发送和接收用户数量
- 统计今日各地区发送消息数据量
- 统计今日发送消息和接收消息用户数
- 统计今日发送消息最多的用户前几名
- 统计今日接收消息最多的用户前几名
- 统计发送人手机型号分布情况
- 统计发送人设备系统分布情况
数据来源
- 聊天业务系统导出2021/11/01一天24小时用户聊天数据,以TSV文本形式存储在文件中
- 数据大小:两个文件共14万条数据
- 列分隔符:\t
数据集及所需文件
- 链接:https://pan.baidu.com/s/1ToTanDrFRhAVsFTb2uclFg
提取码:rkun
🥇基于Hive数仓实现需求开发
⚽建库建表 加载数据
- 建库建表
--创建数据库
create database db_msg;
--切换数据库
use db_msg;
--建表
create table db_msg.tb_msg_source(
msg_time string comment "消息发送时间"
, sender_name string comment "发送人昵称"
, sender_account string comment "发送人账号"
, sender_sex string comment "发送人性别"
, sender_ip string comment "发送人IP"
, sender_os string comment "发送人操作系统"
, sender_phonetype string comment "发送人手机型号"
, sender_network string comment "发送人网络类型"
, sender_gps string comment "发送人GPS定位"
, receiver_name string comment "接收人昵称"
, receiver_ip string comment "接收人IP"
, receiver_account string comment "接收人账号"
, receiver_os string comment "接收人操作系统"
, receiver_phonetype string comment "接收人手机型号"
, receiver_network string comment "接收人网络类型"
, receiver_gps string comment "接收人GPS定位"
, receiver_sex string comment "接收人性别"
, msg_type string comment "消息类型"
, distance string comment "双方距离"
, message string comment "消息内容"
)
--指定分隔符为制表符
row format delimited fields terminated by '\t';
- 加载数据
#上传数据到node1服务器本地文件系统(HS2服务所在机器)
[root@node1 hivedata]# pwd
/root/hivedata
[root@node1 hivedata]# ll
total 54104
-rw-r--r-- 1 root root 28237023 Jun 13 20:24 data1.tsv
-rw-r--r-- 1 root root 27161148 Jun 13 20:24 data2.tsv
--加载数据入表
load data local inpath '/root/hivedata/data1.tsv' into table db_msg.tb_msg_source;
load data local inpath '/root/hivedata/data2.tsv' into table db_msg.tb_msg_source;
- 查询表,查看数据是否导入成功
--查询表
select * from tb_msg_source limit 5;
⚾ETL数据清洗
数据问题
- 当前数据,一些数据字段为空,不是合法数据。
- 需求需要统计每天每个小时消息量,但数据中没有天和小时字段,只有整体时间字段,不好处理。
- 需求中,GPS对经纬度在同一字段,不好处理。
ETL需求
- 对字段为空的不合法数据进行过滤
- where过滤
- 通过时间字段构建天和小时字段
- substr函数
- 从GPS经纬度提取经纬度
- split函数
- 将ETL以后的结果保存到一张新的Hive表中
- create table …as select…
create table db_msg.tb_msg_etl as
select *,
substr(msg_time, 0, 10) as dayinfo, --获取天
substr(msg_time, 12, 2) as hourinfo, --获取小时
split(sender_gps, ",")[0] as sender_lng, --经度
split(sender_gps, ",")[1] as sender_lat --纬度
from db_msg.tb_msg_source
--过滤字段为空数据
where length(sender_gps) > 0;
select
msg_time,dayinfo,hourinfo,sender_gps,sender_lng,sender_lat
from db_msg.tb_msg_etl
limit 5;
--查询数据
🏀需求指标SQL
- 解读需求
- 确定待查询数据表
from
- 分析维度
group by
- 找出计算指标
聚合
- 细节
过滤 排序
-
统计今日消息总量
--需求:统计今日总消息量 create table if not exists tb_rs_total_msg_cnt comment "今日消息总量" as select dayinfo, count(*) as total_msg_cnt from db_msg.tb_msg_etl group by dayinfo; --查询 select * from tb_rs_total_msg_cnt ;
+------------------------------+------------------------------------+ | tb_rs_total_msg_cnt.dayinfo | tb_rs_total_msg_cnt.total_msg_cnt | +------------------------------+------------------------------------+ | 2021-11-01 | 139062 | +------------------------------+------------------------------------+
-
统计今日每小时消息量,发送/接收用户数
create table tb_rs_hour_msg_cnt comment "每小时消息量趋势" as select dayinfo, hourinfo, count(*) as total_msg_cnt, count(distinct sender_account) as sender_usr_cnt, count(distinct receiver_account)as receiver_usr_cnt from db_msg.tb_msg_etl group by dayinfo,hourinfo; select * from tb_rs_hour_msg_cnt limit 5;
+-----------------------------+------------------------------+-----------------------------------+------------------------------------+--------------------------------------+ | tb_rs_hour_msg_cnt.dayinfo | tb_rs_hour_msg_cnt.hourinfo | tb_rs_hour_msg_cnt.total_msg_cnt | tb_rs_hour_msg_cnt.sender_usr_cnt | tb_rs_hour_msg_cnt.receiver_usr_cnt | +-----------------------------+------------------------------+-----------------------------------+------------------------------------+--------------------------------------+ | 2021-11-01 | 00 | 4349 | 3520 | 3558 | | 2021-11-01 | 01 | 2892 | 2524 | 2537 | | 2021-11-01 | 02 | 882 | 842 | 838 | | 2021-11-01 | 03 | 471 | 463 | 460 | | 2021-11-01 | 04 | 206 | 202 | 205 | +-----------------------------+------------------------------+-----------------------------------+------------------------------------+--------------------------------------+
-
统计今日各地区发送消息数据量
create table tb_rs_loc_cnt comment "今日各地区发送总消息量" as select dayinfo, sender_gps, cast(sender_lng as double) as longitude, cast(sender_lat as double) as latitude, count(*) as total_msg_cnt from tb_msg_etl group by dayinfo, sender_gps, sender_lng,sender_lat; select * from tb_rs_loc_cnt limit 5;
+------------------------+---------------------------+--------------------------+-------------------------+------------------------------+ | tb_rs_loc_cnt.dayinfo | tb_rs_loc_cnt.sender_gps | tb_rs_loc_cnt.longitude | tb_rs_loc_cnt.latitude | tb_rs_loc_cnt.total_msg_cnt | +------------------------+---------------------------+--------------------------+-------------------------+------------------------------+ | 2021-11-01 | 100.297355,24.206808 | 100.297355 | 24.206808 | 1397 | | 2021-11-01 | 100.591712,24.004148 | 100.591712 | 24.004148 | 1406 | | 2021-11-01 | 101.62196,36.782187 | 101.62196 | 36.782187 | 1439 | | 2021-11-01 | 102.357852,23.801165 | 102.357852 | 23.801165 | 1399 | | 2021-11-01 | 102.357852,25.682909 | 102.357852 | 25.682909 | 1431 | +------------------------+---------------------------+--------------------------+-------------------------+------------------------------+
-
统计今日发送消息和接受消息用户数
create table tb_rs_usr_cnt comment "今日发送消息人数、接受消息人数" as select dayinfo, count(distinct sender_account) as sender_usr_cnt, count(distinct receiver_account) as receiver_usr_cnt from db_msg.tb_msg_etl group by dayinfo; select * from tb_rs_usr_cnt ;
+------------------------+-------------------------------+---------------------------------+ | tb_rs_usr_cnt.dayinfo | tb_rs_usr_cnt.sender_usr_cnt | tb_rs_usr_cnt.receiver_usr_cnt | +------------------------+-------------------------------+---------------------------------+ | 2021-11-01 | 10008 | 10005 | +------------------------+-------------------------------+---------------------------------+
-
统计今日发送消息最多的Top10用户
create table tb_rs_susr_top10 comment "发送消息条数最多的Top10用户" as select dayinfo, sender_name as username, count(*) as sender_msg_cnt from db_msg.tb_msg_etl group by dayinfo,sender_name order by sender_msg_cnt desc limit 10; select * from tb_rs_susr_top10;
+---------------------------+----------------------------+----------------------------------+ | tb_rs_susr_top10.dayinfo | tb_rs_susr_top10.username | tb_rs_susr_top10.sender_msg_cnt | +---------------------------+----------------------------+----------------------------------+ | 2021-11-01 | 茹鸿晖 | 1466 | | 2021-11-01 | 卢高达 | 1464 | | 2021-11-01 | 犁彭祖 | 1460 | | 2021-11-01 | 沐范 | 1459 | | 2021-11-01 | 夫潍 | 1452 | | 2021-11-01 | 烟心思 | 1449 | | 2021-11-01 | 称子瑜 | 1447 | | 2021-11-01 | 麻宏放 | 1442 | | 2021-11-01 | 邴时 | 1439 | | 2021-11-01 | 养昆颉 | 1431 | +---------------------------+----------------------------+----------------------------------+
-
统计今日接受消息最多的Top10用户
create table tb_rs_rusr_top10 comment "接受消息条数最多的Top10用户" as select dayinfo, receiver_name as username, count(*) as receiver_msg_cnt from db_msg.tb_msg_etl group by dayinfo,receiver_name order by receiver_msg_cnt desc limit 10; select * from tb_rs_rusr_top10 limit 3;
+---------------------------+----------------------------+------------------------------------+ | tb_rs_rusr_top10.dayinfo | tb_rs_rusr_top10.username | tb_rs_rusr_top10.receiver_msg_cnt | +---------------------------+----------------------------+------------------------------------+ | 2021-11-01 | 畅雅柏 | 1539 | | 2021-11-01 | 春纯 | 1491 | | 2021-11-01 | 邝琨瑶 | 1469 | +---------------------------+----------------------------+------------------------------------+
-
统计发送人手机型号分布情况
create table if not exists tb_rs_sender_phone comment "发送人的手机型号分布" as select dayinfo, sender_phonetype, count(distinct sender_account) as cnt from tb_msg_etl group by dayinfo,sender_phonetype; select * from tb_rs_sender_phone limit 3;
+-----------------------------+--------------------------------------+-------------------------+ | tb_rs_sender_phone.dayinfo | tb_rs_sender_phone.sender_phonetype | tb_rs_sender_phone.cnt | +-----------------------------+--------------------------------------+-------------------------+ | 2021-11-01 | Apple iPhone 10 | 6749 | | 2021-11-01 | Apple iPhone 11 | 3441 | | 2021-11-01 | Apple iPhone 7 | 2424 | +-----------------------------+--------------------------------------+-------------------------+
-
统计发送人设备操作系统分布情况
create table tb_rs_sender_os comment "发送人的OS分布" as select dayinfo, sender_os, count(distinct sender_account) as cnt from tb_msg_etl group by dayinfo,sender_os; select * from tb_rs_sender_os;
+--------------------------+----------------------------+----------------------+ | tb_rs_sender_os.dayinfo | tb_rs_sender_os.sender_os | tb_rs_sender_os.cnt | +--------------------------+----------------------------+----------------------+ | 2021-11-01 | Android 5.1 | 5750 | | 2021-11-01 | Android 6 | 8514 | | 2021-11-01 | Android 6.0 | 9398 | | 2021-11-01 | Android 7.0 | 9181 | | 2021-11-01 | Android 8.0 | 8594 | | 2021-11-01 | IOS 10.0 | 1289 | | 2021-11-01 | IOS 12.0 | 8102 | | 2021-11-01 | IOS 9.0 | 8760 | +--------------------------+----------------------------+----------------------+
🎖️FineBI实现可视化报表
官网
https://www.finebi.com/
🏐配置数据源及数据准备
官方文档
https://help.fanruan.com/finebi/doc-view-301.html
-
使用FineBI连接Hive,读取Hive数据表,需要在FineBI中添加Hive驱动jar包
-
将Hive驱动jar包放入FineBI的lib目录下
-
找到提供文件的HiveConnectDrive
- 放入安装路径下的
webapps\webroot\WEB-INF\lib
插件安装
- 我们自己Hive驱动包会与FineBI自带驱动包冲突,导致FineBI无法识别我们自己的驱动
- 安装FineBI官方提供驱动包隔离插件
隔离插件:fr-plugin-hive-driver-loader-3.0.zip
-
安装插件
-
重启FineBI