【MATLAB第53期】基于MATLAB的TSK模糊神经网络时间序列预测模型,含短期预测未来功能

【MATLAB第53期】基于MATLAB的TSK模糊神经网络时间序列预测模型,含短期预测未来功能

一、效果展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、数据设置

  1. 数据采用一列数据
  2. 滑动窗口设置为5 ,可自行设置
  3. 70%训练
  4. 30%测试
  5. 预测未来值为10 ,可自行设置,控制10以内
    在这里插入图片描述
    在这里插入图片描述

三、模型参数

nRules = 1;%模糊推理规则的数量
velocity = 2;%学习速度[0,velocity]之间二进制搜索
nEpochs = 1; %运行次数

评价指标:


   error = desired - output;% 相对误差
   ESS = sum(error(1:n).^2);%误差平方和
    SigmaM = sqrt(var(error(1:n)));%误差方差
    DW = sum(diff(error(1:n)) .^ 2) / sum(error(1:n) .^ 2);%达宾-沃森值
    R2 = 1 - ESS / sum((desired(1:n) - mean(desired(1:n))) .^ 2);%决定系数
        MAPE = mean(abs(error(n+1:end)) ./ abs(desired(n+1:end))) * 100;%mape
    SigmaF = sqrt(var(error(n+1:end)));%误差方差
    Tale = %泰尔系数

四、代码展示

clear all
load data %导入数据   一列数据 
tskData=data; %数据命名为tskData 
acf = autocorr(tskData, length(tskData)-1);% 自相关
pacf = parcorr(tskData, length(tskData)-1);%偏自相关
        
        
    figure();% 偏自相关绘图
    grid on    
    bar(pacf);
    title('偏自相关');
    xlabel('Lag');
    ylabel('Autocorrelation');
    
        
    figure();% 自相关绘图
    grid on    
    bar(acf);
    title('自相关');
    xlabel('Lag');
    ylabel('Autocorrelation');
    
    nInputs =5;%滑动窗口数量 
    nRules = 1;%模糊推理规则的数量
    velocity = 2;%学习速度[0,velocity]之间二进制搜索

    nEpochs = 1; %运行次数
    nLearnSamples =0.7;% 训练样本数量比例
    nSamples = length(tskData) - nInputs; %样本数量
    learnPercent = 70;%训练比例
       testPercent = 100 - learnPercent;%测试比例
    
    Fn = 10;%预测未来数量 ,只支持短期预测。 如10以内


%滑动窗口处理
   	sample = zeros(nSamples, nInputs);
    for i = 1:nSamples
        sample(i,:) = tskData(i:i+nInputs-1);
    end

五、代码获取

后台私信回复“53期”即可获取下载链接。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/36958.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Spring MVC相关注解运用 —— 中篇

目录 一、RESTful风格支持 1.1 RESTful风格介绍 1.2 postman使用 二、PathVariable 2.1 实例程序 2.2 测试结果 三、PostMapping、GetMapping、PutMapping、DeleteMapping 四、HiddenHttpMethodFilter 4.1 在web.xml配置过滤器 4.2 控制器方法 4.3 JSP页面 4.4 测…

论文笔记--SentEval: An Evaluation Toolkit for Universal Sentence Representations

论文笔记--SentEval: An Evaluation Toolkit for Universal Sentence Representations 1. 文章简介2. 文章概括3 文章重点技术3.1 evaluation pipeline3.2 使用 4. 代码4.1 数据下载4.2 句子嵌入4.3 句子嵌入评估 5. 文章亮点6. 原文传送门7. References 1. 文章简介 标题&…

96、基于STM32单片机的温湿度DHT11 烟雾火灾报警器蓝牙物联网APP远程控制设计(程序+原理图+任务书+参考论文+开题报告+流程图+元器件清单等)

单片机及温湿度、烟雾传感器是烟雾报警器系统的两大核心。单片机好比一个桥梁,联系着传感器和报警电路设备。近几年来,单片机已逐步深入应用到工农业生产各部门及人们生活的各个方面。各种类型的单片机也根据社会的需求而开发出来。单片机是器件级计算机…

Redis - 附近商铺、用户签到、UV统计

文章目录 附近商铺、用户签到、UV统计一、附近商铺1.1 GEO数据结构1.2 导入店铺数据到GEO1.3 实现附近商户功能 二、用户签到2.1 BitMap2.2 签到功能2.3 统计连续签到2.3.1 分析2.3.2 代码实现 三、UV统计3.1 HyperLogLog用法3.2 测试百万数据的统计 附近商铺、用户签到、UV统计…

LRU 缓存

题目链接 LRU 缓存 题目描述 注意点 如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字函数 get 和 put 必须以 O(1) 的平均时间复杂度运行 解答思路 如果想以O(1)的速度进行get,则需要将对应的key、value存到map中如果想…

李子转债上市价格预测

李子转债 基本信息 转债名称:李子转债,评级:AA,发行规模:6.0亿元。 正股名称:李子园,今日收盘价:18.06元,转股价格:19.47元。 当前转股价值 转债面值 / 转股…

RabbitMQ笔记--消息中间件,rabbitmq安装及简单使用

1.消息中间件 消息:指在应用间传送的数据。 消息队列中间件:指利用高效可靠的消息传递机制进行与平台无关的数据交流,并基于数据通信来进行分布式系统的集成。通过提供消息传递和消息排队模型,可以在分布式环境下扩展进程间的通…

Elasticsearch【全文检索、倒排索引、应用场景、对比Solr、数据结构】(一)-全面详解(学习总结---从入门到深化)

目录 Elasticsearch介绍_全文检索 Elasticsearch介绍_倒排索引 Elasticsearch介绍_Elasticsearch的出现 Elasticsearch介绍_Elasticsearch应用场景 Elasticsearch介绍_Elasticsearch对比Solr Elasticsearch介绍_Elasticsearch数据结构 Elasticsearch介绍_全文检索 Elasti…

UILabel左上角对齐

设计有个需求,需要文字两行显示,一行的时候左上角对齐,比较常见的需求。 老的办法一般来说是根据宽计算好frame大小,然后重新设置frame。不过感觉这种方式比较麻烦,想了想能不能通过约束来完成这个事情呢。 本着这个思…

(论文翻译)PRUNING FILTER IN FILTER《滤波器中的剪枝滤波器》

公式不清楚的地方请对照英文原文进行查看:原文链接 ABSTRACT 剪枝已成为现代神经网络压缩和加速的一种非常有效的技术。现有的剪枝方法可分为两大类:滤波器剪枝(FP)和权重剪枝(WP)。与WP相比,FP在硬件兼容性方面胜出,但在压缩比方面失败。为了…

springboot开发PC端桌面应用

一、需求描述: 1、要求桌面能在window、Linux和macos系统上运行 2、用户自定义数据筛选策略,策略可通过excel导入导出 3、选择多个excel文件通过策略过滤生成新的excel 二、技术选型及集成环境配置: 1、PC端跨平台直接选用javafx来作为桌…

SpringBoot + Vue前后端分离项目实战 || 四:用户管理功能实现

系列文章: SpringBoot Vue前后端分离项目实战 || 一:Vue前端设计 SpringBoot Vue前后端分离项目实战 || 二:Spring Boot后端与数据库连接 SpringBoot Vue前后端分离项目实战 || 三:Spring Boot后端与Vue前端连接 SpringBoot V…

从零开始制作一个Web蜜罐扫描器(5)

从零开始制作一个Web蜜罐扫描器(3)_luozhonghua2000的博客-CSDN博客 打开一个蜜罐: 查看源码: 这个./js/portraitjs非常引人注入,点进去看一下 很明显是被混淆过了,结合语义来理解,这是portrait=画像,那么可以大胆猜测这段ison是黑客画像用的.猜测了就要进行验证,这里在…

Kafka request.log中RequestQueueTimeMs、LocalTimeMs、RemoteTimeMs、ThrottleTimeMs、含义

Kafka request.log中RequestQueueTimeMs、LocalTimeMs、RemoteTimeMs、ThrottleTimeMs、含义 要理解各个延时项的含义,必须从Kafka收到TCP请求、处理请求到返回TCP包整个流程开始梳理 RequestQueueTimeMs Processor 执行processNewResponses() 方法,不…

软件工程师,学习下JavaScript ES6新特性吧

概述 作为一名软件工程师,不管你是不是前端开发的岗位,工作中或多或少都会用到一点JavaScript。JavaScript是大家所了解的语言名称,但是这个语言名称是Oracle公司注册的商标。JavaScript的正式名称是ECMAScript。1996年11月,JavaS…

RT-Thread 互补滤波器 (STM32 + 6 轴 IMU)

作者:wuhanstudio 原文链接:https://zhuanlan.zhihu.com/p/611568999 最近在看无人驾驶的 Prediction 部分,可以利用 EKF (Extended Kalman Filter) 融合不同传感器的数据,例如 IMU, Lidar 和 GNSS,从而给出更加准确的…

Go语言github.com/gorilla/websocket框架websocket协议通信实战

websocket是实际开发中比较常用的应用层协议,本文利用github.com/gorilla/websocket框架进行websocket通信实战。 目录 1.下载github.com/gorilla/websocket 2.websocket服务端 3.websocket Go客户端 4.websocket 网页客户端 5.运行结果展示 1.下载github.com…

Red Hat Subscription 开发者订阅与激活订阅

目录 前言 进入开发者页面 创建红帽账户 阅读Red Hat订阅; 激活订阅 查看订阅状态 前言 使用命令时会出现以提示,命令不可正常使用。 根据提示信息,我们可以知道,需要通过Red Hat Subscription,开发者订阅。 …

图像分类——图像增强方法

目录 常用的图像增强方法tf.image进行图像增强翻转和裁剪颜色变换 使用ImageDataGenerator(进行图像增强) 常用的图像增强方法 tf.image进行图像增强 离线实现 import tensorflow as tf import matplotlib.pyplot as plt import numpy as npcatplt.imread(./cat.jpg) plt.ims…

Scala中的集合

水善利万物而不争,处众人之所恶,故几于道💦 目录 一、集合简介 二、集合关系继承图 一、集合简介 Java中的集合: Scala中的集合: Scala的集合有三大类:序列Seq、集Set、映射Map,所有的集合…