【机器学习300问】16、逻辑回归模型实现分类的原理?

        在上一篇文章中,我初步介绍了什么是逻辑回归模型,从它能解决什么问题开始介绍,并讲到了它长什么样子的。如果有需要的小伙伴可以回顾一下,链接我放在下面啦:                             
【机器学习300问】15、什么是逻辑回归模型?

        在这篇文章中,我们深入了解一下逻辑回归模型是怎么实现分类的?我想我可以分成三个层次,层层递进的为大家介绍。

一、找到决策边界便能轻松分类

        我想试着从直观的图表入手,反过来推我们需要做些什么才能实现如图的效果。

(1)什么是决策边界?

        大家看到这图的一瞬间,就能想到画一条从左上到右下的线便可以将圈圈数据和叉叉数据分开,这一条线就决策边界。

        用更加通用的语句定义一下,在逻辑回归模型中,我们通常通过设置一个阈值,比如0.5,来决定预测的分类。当预测的概率大于等于这个阈值时,我们将其分类为正类,反之则分类为负类。这个阈值就形成了一个决策边界。

(2)这个决策边界和逻辑回归模型什么关系?

        首先复习一下逻辑回归模型长什么样子的,它是一个函数由两个部分组成,样子如下:

        f_{\overrightarrow{w},b}(\overrightarrow{x}) = g(\overrightarrow{w}\cdot \overrightarrow{x}+b) = \frac{1}{1+e^{-(\overrightarrow{w}\cdot \overrightarrow{x}+b)}} = P(y=1|x;\overrightarrow{w},b)

        长相有点吓人!我来解释一下:

式子解释
f_{\overrightarrow{w},b}(\overrightarrow{x})这是逻辑回归模型的预测值,也可以理解为\widehat{y}
g(\overrightarrow{w}\cdot \overrightarrow{x}+b)这是sigmoid函数,只不过在上一篇文章中写作\sigma (z),这个z= \overrightarrow{w}\cdot \overrightarrow{x}+b
P(y=1|x;\overrightarrow{w},b)P表示给定特征 x 的条件下,样本属于正类y=1的概率

        可以看到,逻辑回归模型本质是一个多项式套在sigmoid函数里面,那么我们就可以从sigmoid函数图像中看出些许端倪。

        我们以sigmoid函数y=0.5为一个阈值,这里的y只是一个符号,为了与上文统一也可以写成\sigma=0.5或者g=0.5都是一个意思,当y>0.5的时候我们认为预测结果是正类,当y<0.5的时候我们认为预测结果是负类。

        当y=0.5的时候z=0,又因为z= \overrightarrow{w}\cdot \overrightarrow{x}+b,所以决策边界就出来了!即:

        \overrightarrow{w}\cdot \overrightarrow{x}+b=0

         我们还是拿这个图举例说明,在图中z=0的方程可以写作 w_{1}x_1+w_{2}x_{2}+b= 0,这里只有两个特征量所以就直接写而不是向量形式书写了。

        从图中可以看出,能让z=0的线有很多条,我随便画了一条,这条线的w_{1}=1,w_{2}=1,b=-3 你能感觉到w和b的不同对应了不同z决策边界,而能让训练集分成合适的两个部分的决策边界不止一条。在这里我是凭借经验或者说直觉找的一对w和b确定了一个决策边界。

(3)当样本无法用直线来区分时

        决策边界的形状取决于特征和参数的选择。如果引入的特征是一组线性的,那么得到的决策边界是线性的;如果引入的特征是非线性的,那么得到的决策边界是非线性的。

        比如这个图中,就可以用 z = x_{1}^{2} + x_{2}^{2} -1来做决策边界,令z=0就可以得到x_{1}^{2} + x_{2}^{2} =1画出图像来的话就是一个圆,如下图

二、如何找到决策边界?

        决策边界的作用是尽可能完美的把正类和负类分开,那么我们就可以用分的准不准作为评判标准。回到逻辑回归模型所解决的问题——二分类问题,真实值y只有可能是0或者1。那么说明我的预测值\hat{y}也只可能是0或者1。

(1)逻辑回归模型的损失函数

        在线性回归模型中,介绍了一种叫做MSE均方误差的代价函数,来评价预测值与真实值之间的差距,进而判断模型是否尽可能的拟合数据。

        在逻辑回归模型中,也存在一种Loss损失函数,来判断预测值与真实值之间的差距。它长这样:

L(f_{\overrightarrow{w},b}(x^{i}),y^{i}) = \left\{\begin{matrix} -log(f) & ,y^{i}=1\\ -log(1-f)&,y^{i}=0 \end{matrix}\right.

        这里暂不讨论它为什么是长这样,只是简单说一下,长这样有一个好处,那就是这是一个凸函数,没有局部最小值,可以很方便的使用梯度下降算法来求得最佳的w和b参数,进而确定决策边界,当决策边界定了就意味着逻辑回归模型也训练完成了。

        另外补充说,上面这种形式的损失函数叫做交叉熵误差,它有如下的特点:

  1. 当模型预测的概率分布与真实分布完全一致时,交叉熵损失取得最小值0,当预测结果完全错误时,交叉熵误差趋近于无穷大。取值范围[0, 1]
  2. 它惩罚了模型预测概率远离真实概率的程度,鼓励模型学习更加准确的概率分布。
  3. 便于通过梯度下降等优化算法更新模型参数。

(2)从图像中简单理解损失函数

        f_{\overrightarrow{w},b}(x^{i})写的太复杂了我还是写成\hat{y}。这样构建的L(f_{\overrightarrow{w},b}(x^{i}),y^{i})函数的特点是:当实际的y=1且预测值\hat{y}也为 1 时误差为 0,当y=1\hat{y}不为1时误差随着\hat{y}变小而变大;当实际的y=0\hat{y}也为 0 时误差为 0,当y=0\hat{y}不为 0时误差随着\hat{y}的变大而变大。

三、逻辑回归模型中的梯度下降算法

(1)梯度下降算法的目的

        梯度下降算法在逻辑回归中的目的是为了找到决策边界,找决策边界其实就是来确定w和b的值,故梯度下降算法就是为了寻找最佳的w和b。

        在逻辑回归模型中的梯度下降算法的目标函数是损失函数J,那么梯度下降算法具体目标就变成了找到损失函数J的最小值,在上面我们介绍的L(f_{\overrightarrow{w},b}(x^{i}),y^{i})是针对某一个点的损失,现在我们计算所有点的损失,也就是整体损失后得到损失函数的终极形态:

       先将损失函数写成一行   L(f_{\overrightarrow{w},b}(x^{i}),y^{i})=-y^{i}log(f)-(1-y^{i})log(1-f)

       在计算整体损失   J(\hat{w},b)=\frac{1}{m}\sum_{i=1}^{m}[L(f_{\overrightarrow{w},b}(x^{i}),y^{i})]

(2)梯度下降算法的步骤

       重复如下步骤即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/353607.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【前端web入门第一天】02 HTML图片标签 超链接标签 音频标签 视频标签

文章目录: 1.HTML图片标签 1.1 图像标签-基本使用1.2 图像标签-属性1.3 路径 1.3.1 相对路径 1.3.2 绝对路径 2.超链接标签 3.音频标签 4.视频标签 1.HTML图片标签 1.1 图像标签-基本使用 作用:在网页中插入图片。 <img src"图片的URL">src用于指定图像…

Kong: Services and Routes 等基本属性

Services 在Kong Gateway中&#xff0c;服务是现有上游应用程序的抽象。服务可以存储插件配置和策略等对象的集合&#xff0c;并且可以与路由相关联。 定义服务时&#xff0c;管理员会提供名称和上游应用程序连接信息。连接详细信息可以在 url 字段中以单个字符串的形式提供…

Kotlin 教程(环境搭建)

Kotlin IntelliJ IDEA环境搭建 IntelliJ IDEA 免费的社区版下载地址&#xff1a;Download IntelliJ IDEA – The Leading Java and Kotlin IDE 下载安装后&#xff0c;我们就可以使用该工具来创建项目&#xff0c;创建过程需要选择 SDK&#xff0c; Kotlin 与 JDK 1.6 一起使…

【c语言】人生重开模拟器

前言&#xff1a; 人生重开模拟器是前段时间非常火的一个小游戏&#xff0c;接下来我们将一起学习使用c语言写一个简易版的人生重开模拟器。 1.实现一个简化版的人生重开模拟器 &#xff08;1&#xff09; 游戏开始的时候&#xff0c;设定初始属性&#xff1a;颜值&#xf…

新建一个基于标准库的工程(STM32)

目录 1.新建存放工程的文件夹 2.打开KEIL5软件 3.新建一个本次工程的文件夹 4.添加工程的必要文件 4.1打开STM32的启动文件 ​编辑 4.2&#xff1a; 4.3添加内核寄存器文件 ​编辑 5.回到keil5软件&#xff0c;将刚才复制的那些文件添加到工程中 5.1添加一个启动文件&am…

【服务器数据恢复】EqualLogic存储磁盘坏道导致存储不可用的数据恢复案例

服务器数据恢复环境&故障&#xff1a; 某公司IT部门一台某品牌EqualLogic PS6100系列存储在运行过程中突然崩溃。 服务器管理员对故障服务器存储进行初步检查&#xff0c;经过检测发现导致该服务器存储无法正常工作的原因是该存储中raid5磁盘阵列内有2块硬盘出现故障离线&a…

VitePress-03-标题锚点的使用与文档内部链接跳转

说明 本文介绍如下内容&#xff1a; 1、vitepress 中 md 文件中的标题锚点 2、锚点的使用 &#xff1a; 文档内部的快速跳转 锚点 什么是锚点 锚点 &#xff1a; 通俗的理解就是一个位置标记&#xff0c;通过这个标记可以快速的进行定位。 【vitepress 中&#xff0c;md 文档的…

LeetCode 40.组合总和 II

组合总和 II 给定一个候选人编号的集合 candidates 和一个目标数 target &#xff0c;找出 candidates 中所有可以使数字和为 target 的组合。 candidates 中的每个数字在每个组合中只能使用 一次 。 注意&#xff1a;解集不能包含重复的组合。 方法一、回溯 由于题目要求解集…

day23 其他事件(页面加载事件、页面滚动事件)

目录 页面加载事件页面/元素滚动事件页面滚动事件——获取位置 页面加载事件 加载外部资源&#xff08;如图片、外联CSS和JavaScript等&#xff09;加载完毕时触发的事件为什么使用&#xff1a; 有时候需要等页面资源全部处理完毕再做一些事老代码喜欢把script写在head中&…

CentOS使用

1.使用SSH连接操作虚拟机中的CentOS 使用代理软件(MobaX/Xshell)通过ssh连接vmware中的虚拟机,可以摆脱vmware笨重的软件,直接在代理软件中进行操作. 包括使用云虚拟器,其实也只是在本地通过ssh连接别处的云服务商的硬件而已. 1.1 配置静态IP 为什么要配置静态IP? 想要使用…

【Linux 内核源码分析】多核调度分析

多核调度 SMP&#xff08;Symmetric Multiprocessing&#xff0c;对称多处理&#xff09;是一种常见的多核处理器架构。它将多个处理器集成到一个计算机系统中&#xff0c;并通过共享系统总线和内存子系统来实现处理器之间的通信。 首先&#xff0c;SMP架构将一组处理器集中在…

leetcode hot100岛屿数量

本题中要求统计岛屿数量&#xff08;数字1的上下左右均为1&#xff0c;则是连续的1&#xff0c;称为一块岛屿&#xff09;。那么这种类型题都是需要依靠深度优先搜索&#xff08;DFS&#xff09;或者广度优先搜索&#xff08;BFS&#xff09;来做的。这两种搜索&#xff0c;实际…

【开源】基于JAVA+Vue+SpringBoot的民宿预定管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 用例设计2.2 功能设计2.2.1 租客角色2.2.2 房主角色2.2.3 系统管理员角色 三、系统展示四、核心代码4.1 查询民宿4.2 新增民宿4.3 新增民宿评价4.4 查询留言4.5 新增民宿订单 五、免责说明 一、摘要 1.1 项目介绍 基于…

第2章-神经网络的数学基础——python深度学习

第2章 神经网络的数学基础 2.1 初识神经网络 我们来看一个具体的神经网络示例&#xff0c;使用 Python 的 Keras 库 来学习手写数字分类。 我们这里要解决的问题是&#xff0c; 将手写数字的灰度图像&#xff08;28 像素28 像素&#xff09;划分到 10 个类别 中&#xff08;0…

【动态规划】【逆向思考】【C++算法】960. 删列造序 III

作者推荐 【动态规划】【map】【C算法】1289. 下降路径最小和 II 本文涉及知识点 动态规划汇总 LeetCode960. 删列造序 III 给定由 n 个小写字母字符串组成的数组 strs &#xff0c;其中每个字符串长度相等。 选取一个删除索引序列&#xff0c;对于 strs 中的每个字符串&a…

STM正点mini-跑马灯

一.库函数版 1.硬件连接 &#xff27;&#xff30;&#xff29;&#xff2f;的输出方式&#xff1a;推挽输出 &#xff29;&#xff2f;口输出为高电平时&#xff0c;P-MOS置高&#xff0c;输出为&#xff11;&#xff0c;LED对应引脚处为高电平&#xff0c;而二极管正&#…

【代码随想录-数组】螺旋矩阵 II

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学习,不断总结,共同进步,活到老学到老导航 檀越剑指大厂系列:全面总结 jav…

《动手学深度学习(PyTorch版)》笔记4.7

Chapter4 Multilayer Perceptron 4.7 Forward/Backward Propagation and Computational Graphs 本节将通过一些基本的数学和计算图&#xff0c;深入探讨反向传播的细节。首先&#xff0c;我们将重点放在带权重衰减&#xff08; L 2 L_2 L2​正则化&#xff09;的单隐藏层多层…

SQL注入:盲注

SQL注入系列文章&#xff1a; 初识SQL注入-CSDN博客 SQL注入&#xff1a;联合查询的三个绕过技巧-CSDN博客 SQL注入&#xff1a;报错注入-CSDN博客 目录 什么是盲注&#xff1f; 布尔盲注 手工注入 使用python脚本 使用sqlmap 时间盲注 手工注入 使用python脚本 使…

深兰科技入选亿欧《“制”敬不凡先锋榜·智能机器人Top10》榜单

日前&#xff0c;由亿欧协办的2023工博会工业智能化发展高峰论坛于上海成功举办&#xff0c;会上发布了《2023智能制造&#xff1a;“制”敬不凡先锋者》系列名单。深兰科技凭借在智能机器人开发中的技术创新和模式应用&#xff0c;入选《“制”敬不凡先锋榜——智能机器人Top1…