十大经典排序算法(上)

目录

1.1冒泡排序

1. 算法步骤

 3.什么时候最快

4. 什么时候最慢

5.代码实现

1.2选择排序

1. 算法步骤

 2. 动图演示

3.代码实现

 1.3 插入排序

1. 算法步骤

2. 动图演示

3. 算法实现

1.4 希尔排序

1. 算法步骤

2. 动图演示

 3.代码实现

1.5 归并排序

1. 算法步骤

 2. 动图演示

 3.代码实现


1.1冒泡排序

  冒泡排序(Bubble Sort)也是一种简单直观的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

1. 算法步骤

  1. 比较相邻的元素。如果第一个比第二个大,就交换他们两个。
  2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
  3. 针对所有的元素重复以上的步骤,除了最后一个。
  4. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

 

 

 3.什么时候最快

当输入的数据已经是正序时。

4. 什么时候最慢

当输入的数据是反序时

5.代码实现

 

public class BubbleSort implements IArraySort {

    @Override
    public int[] sort(int[] sourceArray) throws Exception {
        // 对 arr 进行拷贝,不改变参数内容
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        for (int i = 1; i < arr.length; i++) {
            // 设定一个标记,若为true,则表示此次循环没有进行交换,也就是待排序列已经有序,排序已经完成。
            boolean flag = true;

            for (int j = 0; j < arr.length - i; j++) {
                if (arr[j] > arr[j + 1]) {
                    int tmp = arr[j];
                    arr[j] = arr[j + 1];
                    arr[j + 1] = tmp;

                    flag = false;
                }
            }

            if (flag) {
                break;
            }
        }
        return arr;
    }
}

1.2选择排序

选择排序是一种简单直观的排序算法,无论什么数据进去都是 O(n²) 的时间复杂度。

1. 算法步骤

  1. 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置。
  2. 再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
  3. 重复第二步,直到所有元素均排序完毕。

 2. 动图演示

3.代码实现

public class SelectionSort implements IArraySort {

    @Override
    public int[] sort(int[] sourceArray) throws Exception {
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        // 总共要经过 N-1 轮比较
        for (int i = 0; i < arr.length - 1; i++) {
            int min = i;

            // 每轮需要比较的次数 N-i
            for (int j = i + 1; j < arr.length; j++) {
                if (arr[j] < arr[min]) {
                    // 记录目前能找到的最小值元素的下标
                    min = j;
                }
            }

            // 将找到的最小值和i位置所在的值进行交换
            if (i != min) {
                int tmp = arr[i];
                arr[i] = arr[min];
                arr[min] = tmp;
            }

        }
        return arr;
    }
}

 1.3 插入排序

插入排序是一种最简单直观的排序算法,它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

插入排序和冒泡排序一样,也有一种优化算法,叫做拆半插入。

1. 算法步骤

  1. 将第一待排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未排序序列。
  2. 从头到尾依次扫描未排序序列,将扫描到的每个元素插入有序序列的适当位置。(如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面。)

2. 动图演示

3. 算法实现

public class InsertSort implements IArraySort {

    @Override
    public int[] sort(int[] sourceArray) throws Exception {
        // 对 arr 进行拷贝,不改变参数内容
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        // 从下标为1的元素开始选择合适的位置插入,因为下标为0的只有一个元素,默认是有序的
        for (int i = 1; i < arr.length; i++) {

            // 记录要插入的数据
            int tmp = arr[i];

            // 从已经排序的序列最右边的开始比较,找到比其小的数
            int j = i;
            while (j > 0 && tmp < arr[j - 1]) {
                arr[j] = arr[j - 1];
                j--;
            }

            // 存在比其小的数,插入
            if (j != i) {
                arr[j] = tmp;
            }

        }
        return arr;
    }
}

1.4 希尔排序

希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。但希尔排序是非稳定排序算法。

希尔排序是基于插入排序的以下两点性质而提出改进方法的:

  • 插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率;
  • 但插入排序一般来说是低效的,因为插入排序每次只能将数据移动一位;

希尔排序的基本思想是:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录"基本有序"时,再对全体记录进行依次直接插入排序。

1. 算法步骤

  1. 选择一个增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;
  2. 按增量序列个数 k,对序列进行 k 趟排序;
  3. 每趟排序,根据对应的增量 ti,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为 1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

2. 动图演示

 

 3.代码实现

public static void shellSort(int[] arr) {
    int length = arr.length;
    int temp;
    for (int step = length / 2; step >= 1; step /= 2) {
        for (int i = step; i < length; i++) {
            temp = arr[i];
            int j = i - step;
            while (j >= 0 && arr[j] > temp) {
                arr[j + step] = arr[j];
                j -= step;
            }
            arr[j + step] = temp;
        }
    }
}

1.5 归并排序

归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

作为一种典型的分而治之思想的算法应用,归并排序的实现由两种方法:

  • 自上而下的递归(所有递归的方法都可以用迭代重写,所以就有了第 2 种方法);
  • 自下而上的迭代;

1. 算法步骤

  1. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;
  2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置;
  3. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;
  4. 重复步骤 3 直到某一指针达到序列尾;
  5. 将另一序列剩下的所有元素直接复制到合并序列尾。

 2. 动图演示

 3.代码实现

public class MergeSort implements IArraySort {

    @Override
    public int[] sort(int[] sourceArray) throws Exception {
        // 对 arr 进行拷贝,不改变参数内容
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        if (arr.length < 2) {
            return arr;
        }
        int middle = (int) Math.floor(arr.length / 2);

        int[] left = Arrays.copyOfRange(arr, 0, middle);
        int[] right = Arrays.copyOfRange(arr, middle, arr.length);

        return merge(sort(left), sort(right));
    }

    protected int[] merge(int[] left, int[] right) {
        int[] result = new int[left.length + right.length];
        int i = 0;
        while (left.length > 0 && right.length > 0) {
            if (left[0] <= right[0]) {
                result[i++] = left[0];
                left = Arrays.copyOfRange(left, 1, left.length);
            } else {
                result[i++] = right[0];
                right = Arrays.copyOfRange(right, 1, right.length);
            }
        }

        while (left.length > 0) {
            result[i++] = left[0];
            left = Arrays.copyOfRange(left, 1, left.length);
        }

        while (right.length > 0) {
            result[i++] = right[0];
            right = Arrays.copyOfRange(right, 1, right.length);
        }

        return result;
    }

}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/341.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2023年中国高校计算机大赛-团队程序设计天梯赛(GPLT)上海理工大学校内选拔赛(同步赛) A — E

2023年中国高校计算机大赛-团队程序设计天梯赛&#xff08;GPLT&#xff09;上海理工大学校内选拔赛&#xff08;同步赛) 文章目录A -- A Xor B Problem题目分析codeB -- 吃苹果题目分析codeC -- n皇后问题题目分析codeD -- 分苹果题目分析codeE -- 完型填空题目分析codeA – A…

图像缩放对相机内外参矩阵的影响

参考资料&#xff1a;https://zhuanlan.zhihu.com/p/87185139 一、3D空间中点到图像的投影 设3D空间中的点(x,y,z)(x,y,z)(x,y,z)投影到图像上的像素坐标&#xff08;连续值&#xff0c;以左上角像素的左上角为原点的坐标系&#xff0c;注意与整数值的图像像素索引相区别&…

HTTPS的加密原理(工作机制)

现在很多网站使用的都是HTTPS协议,比如CSDN他们为什么要使用HTTPS协议而不是继续使用HTTP协议呢?以及HTTPS都做了些什么?HTTP协议与HTTPS有哪些区别? 下面我来 讲解这些问题?(篇幅可能有些长,请求耐心观看,我以0基础的角度去讲解这些东西, 如果你有一定的基础前面的跳过就好…

docker安装elasticsearch与head教程完整版—.NET Core Web Api与elasticsearch打造全站全文搜索引擎

默认已经有docker环境 下载与安装 elasticsearch &#xff0c;从hub.docker里面可以看到最新版本的镜像&#xff0c;选择你想要的版本 本教程是以 7.17.7 为案例&#xff0c;为啥不适用最新的&#xff0c;首先个人一般需用最新的版本&#xff0c;如果有亢很难填&#xff0c;其次…

三体到底是啥?用Python跑一遍就明白了

文章目录拉格朗日方程推导方程组微分方程算法化求解画图动图绘制温馨提示&#xff0c;只想看图的画直接跳到最后一节拉格朗日方程 此前所做的一切三体和太阳系的动画&#xff0c;都是基于牛顿力学的&#xff0c;而且直接对微分进行差分化&#xff0c;从而精度非常感人&#xf…

如何用Python求解微分方程组

文章目录odeint简介示例odeint简介 scipy文档中将odeint函数和ode, comples_ode这两个类称为旧API&#xff0c;是scipy早期使用的微分方程求解器&#xff0c;但由于是Fortran实现的&#xff0c;尽管使用起来并不方便&#xff0c;但速度没得说&#xff0c;所以有的时候还挺推荐…

Vite4 + Vue3 + vue-router4 动态路由

动态路由&#xff0c;基本上每一个项目都能接触到这个东西&#xff0c;通俗一点就是我们的菜单是根据后端接口返回的数据进行动态生成的。表面上是对菜单的一个展现处理&#xff0c;其实内部就是对router的一个数据处理。这样就可以根据角色权限或者一些业务上的需求&#xff0…

机器学习入门——线性回归

线性回归什么是线性回归&#xff1f;回归分析&#xff1a;线性回归&#xff1a;回归问题求解单因子线性回归简单实例评估模型表现可视化模型展示多因子线性回归什么是线性回归&#xff1f; 回归分析&#xff1a; 根据数据&#xff0c;确定两种或两种以上变量间相互依赖的定量…

自学大数据第六天~HDFS命令(一)

HDFS常用命令 查看hadoop版本 version hadoop version注意,没有 ‘-’ [hadoopmaster ~]$ hadoop version Hadoop 3.3.4 Source code repository https://github.com/apache/hadoop.git -r a585a73c3e02ac62350c136643a5e7f6095a3dbb Compiled by stevel on 2022-07-29T12:3…

【电赛MSP430系列】GPIO、LED、按键、时钟、中断、串口、定时器、PWM、ADC

文章目录MSP430一、GPIO二、点亮LED三、按键控制LED四、更改主时钟五、串口通信六、串口中断七、外部中断八、定时器九、定时器中断十、PWM十一、ADCMSP430 MSP430 是德州仪器&#xff08;TI&#xff09;一款性能卓越的超低功耗 16 位单片机&#xff0c;自问世以来&#xff0c…

程序员的逆向思维

前要&#xff1a; 为什么你读不懂面试官提问的真实意图&#xff0c;导致很难把问题回答到面试官心坎上? 为什么在面试结束时&#xff0c;你只知道问薪资待遇&#xff0c;不知道如何高质量反问? 作为一名程序员&#xff0c;思维和技能是我们职场生涯中最重要的两个方面。有时候…

【微信小程序】-- 网络数据请求(十九)

&#x1f48c; 所属专栏&#xff1a;【微信小程序开发教程】 &#x1f600; 作  者&#xff1a;我是夜阑的狗&#x1f436; &#x1f680; 个人简介&#xff1a;一个正在努力学技术的CV工程师&#xff0c;专注基础和实战分享 &#xff0c;欢迎咨询&#xff01; &…

到底什么是跨域,如何解决跨域(常见的几种跨域解决方案)?

文章目录1、什么是跨域2、解决跨域的几种方案2.1、JSONP 方式解决跨域2.2、CORS 方式解决跨域&#xff08;常见&#xff0c;通常仅需服务端修改即可&#xff09;2.3、Nginx 反向代理解决跨域&#xff08;推荐使用&#xff0c;配置简单&#xff09;2.4、WebSocket 解决跨域2.5、…

软测面试了一个00后,绝对能称为是内卷届的天花板

前言 公司前段缺人&#xff0c;也面了不少测试&#xff0c;结果竟然没有一个合适的。一开始瞄准的就是中级的水准&#xff0c;也没指望来大牛&#xff0c;提供的薪资也不低&#xff0c;面试的人很多&#xff0c;但平均水平很让人失望。令我印象最深的是一个00后测试员&#xf…

【JavaScript 逆向】百度旋转验证码逆向分析

声明本文章中所有内容仅供学习交流&#xff0c;相关链接做了脱敏处理&#xff0c;若有侵权&#xff0c;请联系我立即删除&#xff01;案例目标爱企查百度安全验证百度搜索&#xff1a;aHR0cHM6Ly93YXBwYXNzLmJhaWR1LmNvbS9zdGF0aWMvY2FwdGNoYS8以上均做了脱敏处理&#xff0c;B…

操作系统(2.2)--进程的描述与控制

目录 二、进程的描述 1.进程的定义和特征 1.1进程的定义 1.2进程的特征 2.进程的基本状态及转换 2.1进程的三种基本状态 2.2 三种基本状态的转换 2.3创建状态和中止状态 3.挂起操作和进程状态的转换 3.1 挂起状态的引入 3.2 引入挂起操作后三个进程状态的转换 …

07从零开始学Java之如何正确的编写Java代码?

作者&#xff1a;孙玉昌&#xff0c;昵称【一一哥】&#xff0c;另外【壹壹哥】也是我哦CSDN博客专家、万粉博主、阿里云专家博主、掘金优质作者前言在上一篇文章中&#xff0c;壹哥带领大家开始编写了第一个Java案例&#xff0c;在我们的cmd命令窗口中输出了”Hello World“这…

【蓝桥杯-筑基篇】常用API 运用(1)

&#x1f353;系列专栏:蓝桥杯 &#x1f349;个人主页:个人主页 目录 &#x1f34d;1.输入身份证&#xff0c;判断性别&#x1f34d; &#x1f34d;2.输入英语句子&#xff0c;统计单词个数&#x1f34d; &#x1f95d;3.加密解密&#x1f95d; &#x1f30e;4.相邻重复子串…

【6G 新技术】6G数据面介绍

博主未授权任何人或组织机构转载博主任何原创文章&#xff0c;感谢各位对原创的支持&#xff01; 博主链接 本人就职于国际知名终端厂商&#xff0c;负责modem芯片研发。 在5G早期负责终端数据业务层、核心网相关的开发工作&#xff0c;目前牵头6G算力网络技术标准研究。 博客…

订单30分钟未支付自动取消怎么实现?

目录了解需求方案 1&#xff1a;数据库轮询方案 2&#xff1a;JDK 的延迟队列方案 3&#xff1a;时间轮算法方案 4&#xff1a;redis 缓存方案 5&#xff1a;使用消息队列了解需求在开发中&#xff0c;往往会遇到一些关于延时任务的需求。例如生成订单 30 分钟未支付&#xff0…