(10)Hive的相关概念——文件格式和数据压缩

目录

一、文件格式

1.1 列式存储和行式存储

1.1.1 行存储的特点

1.1.2 列存储的特点

1.2 TextFile

1.3 SequenceFile

1.4  Parquet

1.5 ORC

二、数据压缩 

2.1 数据压缩-概述

 2.1.1 压缩的优点

 2.1.2 压缩的缺点

2.2 Hive中压缩配置

2.2.1 开启Map输出阶段压缩(MR 引擎)

2.2.2 开启Reduce输出阶段压缩

2.3 Hive中压缩测试

一、文件格式

     Hive数据存储的本质还是HDFS,所有的数据读写都基于HDFS的文件来实现。为了提高对HDFS文件读写的性能,Hive提供了多种文件存储格式:TextFile、SequenceFile、ORC、Parquet等。不同的文件存储格式具有不同的存储特点,有的可以降低存储空间(列式存储),有的可以提高查询性能(行式存储)。Hive的文件格式在建表时指定,默认是TextFile

1.1 列式存储和行式存储

1.1.1 行存储的特点

    查询满足条件的一整行数据的时候,行存储只需要找到其中一个值,其余的值都在相邻地方,所以此时行存储查询的速度更快。

1.1.2 列存储的特点

    每个字段的数据类型一定是相同的,列式存储可以针对性的设计更好的设计压缩算法。TextFileSequenceFile的存储格式都是基于行存储的,ORC和Parquet是基于列式存储的。

1.2 TextFile

     TextFile是Hive中默认的文件格式,也是最常见的数据文件格式,存储形式为按行存储。Hive设计时考虑到为了避免各种编码及数据错乱的问题,选用了TextFile作为默认的格式。建表时不指定存储格式即为TextFile,导入数据时把数据文件拷贝至HDFS不进行处理。

1.3 SequenceFile

    SequenceFile是Hadoop里用来存储序列化的键值对,即二进制的一种文件格式。SequenceFile文件也可以作为MapReduce作业的输入和输出,hive也支持这种格式。

--sequencefile表
create table tb_sogou_seq(
    stime string,
    userid string,
    keyword string,
    clickorder string,
    url string
)
row format delimited fields terminated by '\t'
stored as sequencefile;

insert into table tb_sogou_seq
select * from tb_sogou_source;  -- tb_sogou_source表 是txt文件格式

   下图是插入原始txt文件(tb_sogou_source)大概有1.07G1260万条数据存储成SequenceFile的文件大小。 

1.4  Parquet

       Parquet是一种支持嵌套结构的列式存储文件格式。作为大数据系统中OLAP查询的优化方案,它已经被多种查询引擎原生支持,并且部分高性能引擎将其作为默认的文件存储格式。

--Parquet格式
create table tb_sogou_parquet(
    stime string,
    userid string,
    keyword string,
    clickorder string,
    url string
)
row format delimited fields terminated by '\t'
stored as parquet;

insert into table tb_sogou_parquet
select * from tb_sogou_source; -- tb_sogou_source表 是txt文件格式

 下面图示是插入原始txt文件(tb_sogou_source)大概有1.07G1260万条数据存储成Parquet的文件大小。

1.5 ORC

    ORC(OptimizedRC File)文件格式也是一种Hadoop生态圈中的列式存储格式;它最初产生自Apache Hive,用于降低Hadoop数据存储空间和加速Hive查询速度。

--ORC格式
create table tb_sogou_orc(
    stime string,
    userid string,
    keyword string,
    clickorder string,
    url string
)
row format delimited fields terminated by '\t'
stored as orc;

insert into table tb_sogou_orc
select * from tb_sogou_source;

 下面图示是插入原始txt文件(tb_sogou_source)大概有1.07G1260万条数据存储成ORC的文件大小。

二、数据压缩 

2.1 数据压缩-概述

     Hive压缩实际上说的就是MapReduce的压缩。Hive底层运行MapReduce程序时,磁盘I/O操作、网络数据传输、shuffle(清洗)和merge(合并)要花大量的时间,尤其是数据规模很大和工作负载密集的情况下。鉴于磁盘I/O和网络带宽是Hadoop的宝贵资源,数据压缩对于节省资源、最小化磁盘I/O和网络传输非常有帮助。MR 支持的压缩算法如下

 2.1.1 压缩的优点

  • 减小文件存储所占空间
  • 加快文件传输效率,从而提高系统的处理速度
  • 降低IO读写的次数

 2.1.2 压缩的缺点

  • 使用数据时需要先对文件解压,加重CPU负荷,压缩算法越复杂,解压时间越长
  • Hive中的压缩就是使用了Hadoop中的压缩实现的,所以Hadoop中支持的压缩在Hive中都可以直接使用。

2.2 Hive中压缩配置

2.2.1 开启Map输出阶段压缩(MR 引擎)

    开启map输出阶段的压缩可以减少mapReduce task间数据传输量。具体参数有:

--开启hive中间传输数据压缩功能
set hive.exec.compress.intermediate=true;
--开启mapreduce中map输出端的压缩功能
set mapreduce.map.output.compress=true;
--设置mapreduce中map输出端的数据的压缩方式
set mapreduce.map.output.compress.codec = org.apache.hadoop.io.compress.SnappyCodec;

2.2.2 开启Reduce输出阶段压缩

    当 Hive将执行结果写入到表中时,输出内容同样可以进行压缩。其余参数如下:

#当Hive将输出内容写入到表中时,输出内容同样可以进行压缩。属性hive.exec.compress.output控制着这个功能
--开启hive执行结果的输出压缩功能
set hive.exec.compress.output=true;

---开启mapreduce最终输出数据压缩
set mapreduce.output.fileoutputformat.compress=true;

---设置mapreduce最终数据输出压缩方式
set mapreduce.output.fileoutputformat.compress.codec = org.apache.hadoop.io.compress.SnappyCodec;

---设置mapreduce最终数据输出压缩为块压缩
set mapreduce.output.fileoutputformat.compress.type=BLOCK;

2.3 Hive中压缩测试

  • textfile格式snappy压缩
--创建表,指定为textfile格式,并使用snappy压缩
create table log_orc_snappy(
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
row format delimited fields terminated by '\t'
stored as textfile 
tblproperties("orc.compress"="SNAPPY");
  • orc格式snappy压缩
--创建表,指定为orc格式,并使用snappy压缩
create table log_orc_snappy(
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
row format delimited fields terminated by '\t'
stored as orc
tblproperties("orc.compress"="SNAPPY");
  • orc格式不使用压缩
--创建表,指定为orc格式,并使用snappy压缩
create table log_orc_snappy(
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
row format delimited fields terminated by '\t'
stored as orc
tblproperties("orc.compress"="NONE");

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/388863.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[OPEN SQL] 修改数据

MODIFY语句用于修改数据库表中的数据 MODIFY拥有INSERT和UPDATE的操作,如果数据库表中不存在符合条件的数据则会添加该条新数据,反之数据库表中存在符合条件的数据则会更新该条数据 本次操作使用的数据库表为SCUSTOM,其字段内容如下所示 航…

Mysql运维篇(四) Xtarbackup--备份与恢复练习

一路走来,所有遇到的人,帮助过我的、伤害过我的都是朋友,没有一个是敌人。如有侵权,请留言,我及时删除! 前言 xtrabackup是Percona公司CTO Vadim参与开发的一款基于InnoDB的在线热备工具,具有…

力扣例题----二叉树

文章目录 1. 100.相同的树2. 572. 另一颗树的子树3. 266.翻转二叉树4. LCR 175.计算二叉树的深度5. 110.平衡二叉树6. 101. 对称二叉树7. 牛客题目:KY11 二叉树遍历8. 102.二叉树的层序遍历9. 236.二叉树的最近公共祖先10. 105.根据前序和中序构造一棵二叉树11. 106…

Rust - 切片Slice

Slice类型 Slice数据类型没有所有权,slice允许我们引用集合中一段连续的元素序列而不用引用整个集合。字符串slice(string slice) 是String中 一部分值的引用。如下述代码示例,不是对整个String的引用而是对部分String的引用: fn main() {l…

ESP32学习(1)——环境搭建

使用的ESP32板子如下图所示 它可以用Arduino 软件,基于C语言开发。但是,在这里,我是用Thonny软件,基于micro_python对其进行开发。 1.安装Thonny Thonny的软件安装包,可以去它官网上下载。Thonny, Python IDE for begi…

leetcode 160 相交链表

题目 给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点,返回 null 。 图示两个链表在节点 c1 开始相交: 题目数据 保证 整个链式结构中不存在环。 注意,函数返回结…

09、全文检索 -- Solr -- SpringBoot 整合 Spring Data Solr (生成DAO组件 和 实现自定义查询方法)

目录 SpringBoot 整合 Spring Data SolrSpring Data Solr的功能(生成DAO组件):Spring Data Solr大致包括如下几方面功能:Query查询(属于半自动)代码演示:1、演示通过dao组件来保存文档1、实体类…

Flutter Android开发 梳理Google Material Design颜色体系

前言 做安卓开发(Kotlin语言),Flutter开发的人员应该都听说过谷歌一直推崇的Material Design,而Material Design Color是其推崇的颜色体系,具体来说,Material Design Color是一套旨在帮助设计师和开发者创…

树形dp 笔记

树的最长路径 给定一棵树,树中包含 n 个结点(编号1~n)和 n−1 条无向边,每条边都有一个权值。 现在请你找到树中的一条最长路径。 换句话说,要找到一条路径,使得使得路径两端的点的距离最远。 注意&…

ELAdmin 隐藏添加编辑按钮

使用场景 做了一个监控模块,数据都是定时生成的,所以不需要手动添加和编辑功能。 顶部不显示 可以使用 true 或者 false 控制现实隐藏 created() {this.crud.optShow {add: false,edit: false,del: true,download: true,reset: true}},如果没有 crea…

Mysql第一关之常规用法

简介 介绍Mysql常规概念,用法。包括DDL、DCL、DML、DQL,关键字、分组、连表、函数、排序、分页等。 一、 SQL DCMQ,分别代表DDL、DCL、DML、DQL。 模糊简记为DCMQ,看起来像一个消息队列。 D:Definition 定义语句 M…

Learn LaTeX 019 - LaTex Math Formula 数学行内与行间公式

在科学排版中输入数学公式一直是一件很有挑战的事情,这个视频讲到了行内公式和行间公式的处理方法,并给出具体的演示。 https://www.ixigua.com/7298100920137548288?id7307433236572373556&logTag04e35402d88b16212e72

使用正点原子i.mx6ull加载字符驱动模块chrdevbase

搞了整整两天才整好!踩了不少坑,记录一下 0. 操作基础 操作前需要设置好如下配置 1.开发板和ubuntu能够互相ping通 2.开发板的SD卡中安装好uboot,我用的V2.4版本的,其他版本应该也行 3.准备材料 01_chrdevbase文件 linux-im…

windows vs 自己编译源码 leveldb 然后使用自己编译的文件

1 准备源码文件 1.1 第一种方法 git下载源码 vs项目中git leveldb源码和git third_party googletest-CSDN博客 1.2 第二种方法 手动下载 然后把第三方的源码下载 复制到 third_party 对应的文件夹中 没有文件夹 third_party -> powershell mkdir third_party 2 编译lev…

【AIGC】Stable Diffusion的生成参数入门

Stable Diffusion 的生成参数是用来控制图像生成过程的重要设置,下面是一些常见的生成参数及其详解 1、采样器,关于采样器的选择参照作者的上一篇文章 2、采样步数(Sampling Steps)是指在生成图像时模型执行的总步数&#xff0c…

详解 Redis 实现数据去重

✨✨ 欢迎大家来到喔的嘛呀的博客✨✨ 🎈🎈希望这篇博客对大家能有帮助🎈🎈 目录 言 一. Redis去重原理 1. Redis Set 数据结构 2. 基于 Set 实现数据去重 3. 代码示例 4. 总结 …

【Web】从零开始的js逆向学习笔记(上)

目录 一、逆向基础 1.1 语法基础 1.2 作用域 1.3 窗口对象属性 1.4 事件 二、浏览器控制台 2.1 Network Network-Headers Network-Header-General Network-Header-Response Headers Network-Header-Request Headers 2.2 Sources 2.3 Application 2.4 Console 三、…

C++初阶:适合新手的手撕list(模拟实现list)

上次讲了常用的接口:今天就来进行模拟实现啦 文章目录 1.基本结构与文件规划2.空参构造函数(constructor)3.完善迭代器(iterator)(begin(),end())4.List Capacity(size(),empty())4.增删改查(push_back,pop_back,pop_f…

MySQL篇----第二十二篇

系列文章目录 文章目录 系列文章目录前言一、什么是表级锁二、什么是页级锁三、什么是行级锁四、什么是悲观锁前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去分享给你的码吧。 一、…

vue axios 请求后端无法传参问题

vue请求后端无法传参问题 问题描述处理过程总结 问题描述 在学习vue时,使用axios调用后端,发现无法把参数正确传到后端,现象如下: 使用vue发起请求,浏览器上已经有传参,但是后端没接收到对应的用户名密码&…