RAG(检索增强生成 )

📑前言

本文主要是【RAG】——RAG(检索增强生成 )的文章,如果有什么需要改进的地方还请大佬指出⛺️

🎬作者简介:大家好,我是听风与他🥇
☁️博客首页:CSDN主页听风与他
🌄每日一句:狠狠沉淀,顶峰相见

目录

  • 📑前言
  • RAG
    • 1.RAG定义
    • 2.RAG技术演化
    • 3.RAG优势
  • LangChain实现RAG
    • 1.基础环境准备
    • 2.在项目根目录创建.env文件,用来存放相关配置(configuration.env)
    • 3.准备一个矢量数据库来保存所有附加信息的外部知识源。
      • 3.1 加载数据
      • 3.2数据分块
      • 3.3数据块存储
  • RAG实现
    • 1.数据检索
    • 2.提示增强
    • 3.答案生成
  • 📑文章末尾

RAG

1.RAG定义

  • llm是一个预训练的模型,这就决定了llm自身无法实时更新模型中的知识,由此,业界已经形成了通过RAG(Retrieval Augmented Generation)等外接知识库等方式快速扩展llm知识。
  • RAG的增强阶段可以在pre-training预训练,Fine-tuning微调,Inference推理三个阶段;从增强的数据源,包括非结构化数据,结构化数据和llm生成的内容三个途径。

2.RAG技术演化

  • RAG通过优化检索器、生成器等关键部分,为大模型中的复杂知识密集型任务提供了更高效的解决任务。
  • 检索阶段:利用编码模型根据问题检索相关文档。
  • 生成阶段:将检索到的上下文作为条件,系统生成文本。

3.RAG优势

结合检索系统和生成模型。能利用最新信息,提高答案质量,具有更好的可解释性和适应性。简单来说,就是实时更新检索库。

LangChain实现RAG

1.基础环境准备

pip install langchain openai weaviate-client

2.在项目根目录创建.env文件,用来存放相关配置(configuration.env)

OPENAI_API_KEY="此处添openai的api_key"

3.准备一个矢量数据库来保存所有附加信息的外部知识源。

3.1 加载数据

  • 这里选择斗破苍穹.txt作为文档输出,要加载到langchain中的TextLoader中
from langchain.document_loaders import TextLoader
loader = TextLoader('./a.txt')
documents = loader.load()

3.2数据分块

  • 因为文档在其原始状态下太长,无法放入大模型的上下文窗口,所以需要将其分成更小的部分。LangChain 内置了许多用于文本的分割器。这里使用 chunk_size 约为 1024 且 chunk_overlap 为128 的 CharacterTextSplitter 来保持块之间的文本连续性。
from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter(chunk_size=1024, chunk_overlap=128)
chunks = text_splitter.split_documents(documents)

3.3数据块存储

  • 要启用跨文本块的语义搜索,需要为每个块生成向量嵌入,然后将它们与其嵌入存储在一起。要生成向量嵌入,可以使用 OpenAI 嵌入模型,并使用 Weaviate 向量数据库来进行存储。通过调用 .from_documents(),矢量数据库会自动填充块。
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Weaviate
import weaviate
from weaviate.embedded import EmbeddedOptions

client = weaviate.Client(
  embedded_options = EmbeddedOptions()
)

vectorstore = Weaviate.from_documents(
    client = client,    
    documents = chunks,
    embedding = OpenAIEmbeddings(),
    by_text = False
)

RAG实现

1.数据检索

  • 将数据存入矢量数据库后,就可以将其定义为检索器组件,该组件根据用户查询和嵌入块之间的语义相似性获取相关上下文。
retriever = vectorstore.as_retriever()

2.提示增强

  • 完成数据检索之后,就可以使用相关上下文来增强提示。在这个过程中需要准备一个提示模板。可以通过提示模板轻松自定义提示,如下所示。
from langchain.prompts import ChatPromptTemplate
template = """你是一个问答机器人助手,请使用以下检索到的上下文来回答问题,如果你不知道答案,就说你不知道。问题是:{question},上下文: {context},答案是:
"""
prompt = ChatPromptTemplate.from_template(template)

3.答案生成

  • 利用 RAG 管道构建一条链,将检索器、提示模板和 LLM 链接在一起。定义了 RAG 链,就可以调用它了。
from langchain.chat_models import ChatOpenAI
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.output_parser import StrOutputParser
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)

rag_chain = (
    {"context": retriever,  "question": RunnablePassthrough()} 
    | prompt 
    | llm
    | StrOutputParser() 
)

query = "萧炎的表妹是谁?"
res=rag_chain.invoke(query)
print(f'答案:{res}')

📑文章末尾

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/318626.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

最新消息:OpenAI GPT Store 正式上线,GPTs 应用商店来了

OpenAI推出的两款新产品和服务:GPT Store和ChatGPT Team,提供了许多全新的解决方案和功能,旨在帮助用户更轻松地使用和构建GPT工具,同时也增加了公司的收入来源。GPT Store是一个全新的在线平台,允许用户创建和分享自定…

小程序基础学习(多插槽)

先创建插槽 定义多插槽的每一个插槽的属性 在js文件中启用多插槽 在页面使用多插槽 组件代码 <!--components/my-slots/my-slots.wxml--><view class"container"><view class"left"> <slot name"left" ></slot>&…

【DC快速上手教程--1 Setup the DC】

DC快速上手教程--1 Setup the DC 0 Intro1 DC Demo 本篇系列教程介绍总结DC Flow&#xff0c;为了不涉密&#xff0c;在这里以DC labs为Demo做一个入门的介绍&#xff1b;目标&#xff1a;用起来EDA 工具是最基础也是最简单的&#xff1b;重点是如何去分析报告&#xff0c;依据…

Jenkins集成Sonar Qube

下载插件 重启Jenkins 容器 sonarqube 使用令牌 Jenkins 配置 重新构建

Windows平台RTMP推送|轻量级RTSP服务录像模块如何支持中文路径?

技术背景 我们在做Windows平台RTMP推送、轻量级RTSP服务录像模块的时候&#xff0c;部分开发者抱怨路径无法设置中文&#xff0c;只能设置为英文。 以C#的接口为例&#xff0c;早期的设计如下&#xff1a; /** 设置本地录像目录, 必须是英文目录&#xff0c;否则会失败*/[DllI…

YOLOv5改进 | 注意力篇 | CGAttention实现级联群体注意力机制 (全网首发改进)

一、本文介绍 本文给大家带来的改进机制是实现级联群体注意力机制CascadedGroupAttention,其主要思想为增强输入到注意力头的特征的多样性。与以前的自注意力不同,它为每个头提供不同的输入分割,并跨头级联输出特征。这种方法不仅减少了多头注意力中的计算冗余,而且通过增…

Spring | Spring框架最基本核心的jar包、Spring的入门程序、依赖注入

目录&#xff1a; 1.Spring框架最基本、最核心的jar包2.Spring的入门程序3.依赖注入3.1 依赖注入的概念3.2 依赖注入的实现方式 1.Spring框架最基本、最核心的jar包 Spring是一个轻量级框架&#xff0c;Spring最基本、最核心的的jar包括 : beans、context、core、expression。 …

Dobbo---分布式系统通信方式

通信方式 分布式系统通信方式1. RMIRMI 通信实现案例2. RPC常用RPC框架 分布式系统通信方式 1. RMI RMI ( Remote Method Invocation 远程方法调用) 图1.1 客户端-服务端通信方式 客户端将要调用的方法及参数&#xff0c;打包为辅助对象&#xff0c;通过网络socket&#xff…

AI-图片转换中国风动漫人物

&#x1f3e1; 个人主页&#xff1a;IT贫道-CSDN博客 &#x1f6a9; 私聊博主&#xff1a;私聊博主加WX好友&#xff0c;获取更多资料哦~ &#x1f514; 博主个人B栈地址&#xff1a;豹哥教你学编程的个人空间-豹哥教你学编程个人主页-哔哩哔哩视频 目录 1. AI卡通秀原理 2. …

Android WiFi Service启动-Android13

Android WiFi Service启动 - Android13 1、SystemServer中入口2、WifiService启动2.1 关键类概要2.2 启动时序图 Android WiFi基础概览 AOSP > 文档 > 心主题 > WiFi概览 1、SystemServer中入口 编译生成对应的jar包&#xff1a;"/apex/com.android.wifi/javalib…

Sonar Qube基本使用

中文化 Sonar Qube的使用方式很多&#xff0c;Maven可以整合&#xff0c;也可以采用sonar-scanner的方式&#xff0c;再查看Sonar Qube的检测效果 Sonar-scanner实现代码检测 下载Sonar-scanner&#xff1a;https://binaries.sonarsource.com/Distribution/sonar-scanner-cli/…

Qt/C++编写视频监控系统83-自定义悬浮条信息

一、前言 一般视频控件上会给出个悬浮条&#xff0c;这个悬浮条用于显示分辨率或者一些用户期望看到的信息&#xff0c;一般常用的信息除了分辨率以外&#xff0c;还有帧率、封装格式、视频解码器名称、音频解码器名称、实时码率等&#xff0c;由于实际的场景不一样&#xff0…

(南京观海微电子)——色调介绍

色温可以把她理解为宏观上的一种大的环境。你拿起一张图片&#xff0c;整体感觉上在光线分布上颜色是饱满温和还是单调冷艳&#xff0c;从字面意思理解可以简单理解为给人的一种整体印象。包括温暖 白色 清凉或者说冷。 色调就是说在整体环境下色彩的浓淡分配方面的定义。 色调…

通信入门系列——微积分中极限、连续、导数、微分、积分

本节目录 一、极限 1、数列极限 2、函数极限 二、连续 三、导数 四、微分 五、积分本节内容 一、极限 1、数列极限 数列极限&#xff1a;设{xn}为一个实数列&#xff0c;A为一个定数。若对任意给定的ε>0&#xff0c;总存在正整数N,使得当n>N时&#xff0c;有|xn-A|<…

蓝桥杯AcWing学习笔记 8-1数论的学习(上)

蓝桥杯 我的AcWing 题目及图片来自蓝桥杯C AB组辅导课 数论&#xff08;上&#xff09; 蓝桥杯省赛中考的数论不是很多&#xff0c;这里讲几个蓝桥杯常考的知识点。 欧几里得算法——辗转相除法 欧几里得算法代码&#xff1a; import java.util.Scanner ;public class Main…

小程序基础学习(js混编)

在组件中使用外部js代码实现数据改变 先创建js文件 编写一些组件代码 编写外部js代码 在组件的js中引入外部js 在 app.json中添加路径规则 组件代码 <!--components/my-behavior/my-behavior.wxml--> <view><view>当前计数为{{count}}</view> <v…

Redis主从复制、哨兵及集群

目录 简介 主从复制 哨兵 集群 1.Redis 主从复制 主从复制的作用 主从工作原理 主从复制搭建 安装redis 修改redis配置文件Master节点操作 修改 Redis 配置文件slave节点操作 验证主从效果 2.Redis 哨兵模式 哨兵模式的作用 哨兵结构组成部分 故障转移机制 主…

Android 13.0 SystemUI下拉状态栏定制二 锁屏页面横竖屏时钟都居中功能实现一

1.前言 在13.0的系统rom定制化开发中,在关于systemui的锁屏页面功能定制中,由于在平板横屏锁屏功能中,时钟显示的很大,并且是在左旁边居中显示的, 由于需要和竖屏显示一样,所以就需要用到小时钟显示,然后同样需要居中,所以就来分析下相关的源码,来实现具体的功能 2.S…

图解智慧:数据可视化如何助你高效洞悉信息?

在信息爆炸的时代&#xff0c;数据扮演着越来越重要的角色&#xff0c;而数据可视化则成为解读和理解海量数据的得力工具。那么&#xff0c;数据可视化是如何帮助我们高效了解数据的呢&#xff1f;下面我就以可视化从业者的角度来简单聊聊这个话题。 无需深奥的专业知识&#x…

leetcode 每日一题 2024年01月14日 删除排序链表中的重复元素

题目 83. 删除排序链表中的重复元素 给定一个已排序的链表的头 head &#xff0c; 删除所有重复的元素&#xff0c;使每个元素只出现一次 。返回 已排序的链表 。 示例 1&#xff1a; 输入&#xff1a;head [1,1,2] 输出&#xff1a;[1,2]示例 2&#xff1a; 输入&#xff…