Redis主从复制、哨兵及集群

目录

简介

主从复制

哨兵

集群

1.Redis 主从复制

主从复制的作用

主从工作原理

主从复制搭建

安装redis

修改redis配置文件Master节点操作

修改 Redis 配置文件slave节点操作

验证主从效果

2.Redis 哨兵模式

哨兵模式的作用

哨兵结构组成部分

故障转移机制

主节点的选举

哨兵模式搭建

修改 Redis 哨兵模式的配置文件(所有节点操作)

设置脚本VIP漂移

启动哨兵模式,查看哨兵信息

故障模拟

3.Redis 群集模式

集群的作用

数据分区

高可用

Redis集群的数据分片

以3个节点组成的集群为例

Redis集群的主从复制模型

群集模式搭建

 群集配置

开启群集功能

启动redis节点

启动集群

测试群集

群集扩容

创建一个新的主,从节点

将127.0.0.1:6008创建为127.0.0.1:6007的从节点

分配槽数

查看集群状态


简介

主从复制

主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。

哨兵

在主从复制的基础上,哨兵实现了自动化的故障恢复。缺陷:写操作无法负载均衡;存储能力受到单机的限制;哨兵无法对从节点进行自动故障转移,在读写分离场景下,从节点故障会导致读服务不可用,需要对从节点做额外的监控、切换操作。

集群

通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。

1.Redis 主从复制

  • 主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(Master),后者称为从节点(Slave);数据的复制是单向的,只能由主节点到从节点。
  • 默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。

主从复制的作用

数据冗余

  • 主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。

故障恢复

  • 当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。

负载均衡

  • 在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。

高可用基石

  • 除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。

主从工作原理

  1. 首次同步:当从节点要进行主从复制时,它会发送一个SYNC命令给主节点。主节点收到SYNC命令后,会执行BGSAVE命令来生成RDB快照文件,并在生成期间使用缓冲区记录所有写操作。
  2. 快照传输:当主节点完成BGSAVE命令并且快照文件准备好后,将快照文件传输给从节点。主节点将快照文件发送给从节点,并且在发送过程中,主节点会继续将新的写操作缓冲到内存中。
  3. 追赶复制:当从节点收到快照文件后,会加载快照文件并应用到自己的数据集中。一旦快照文件被加载,从节点会向主节点发送一个PSYNC命令,以便获取缓冲区中未发送的写操作
  4. 增量复制:主节点收到PSYNC命令后,会将缓冲区中未发送的写操作发送给从节点,从节点会执行这些写操作,保证与主节点的数据一致性。此时,从节点已经追赶上了主节点的状态
  5. 同步:从节点会继续监听主节点的命令,并及时执行主节点的写操作,以保持与主节点的数据同步。主节点会定期将自己的操作发送给从节点,以便从节点保持最新的数据状态.

注意:当slave首次同步或者宕机后恢复时,会全盘加载,以追赶上大部队,即全量复制

主从复制搭建

实验准备:

Master节点:192.168.88.22
Slave1节点:192.168.88.40
Slave2节点:192.168.88.13

-----安装 Redis-----
//环境准备
systemctl stop firewalld
systemctl disable firewalld
setenforce 0
sed -i 's/enforcing/disabled/' /etc/selinux/config

#修改内核参数
vim /etc/sysctl.conf
vm.overcommit_memory = 1
net.core.somaxconn = 2048

sysctl -p
yum install -y gcc gcc-c++ make

安装redis

tar -xf redis-7.0.13.tar.gz
cd redis-7.0.13/
make
make PREFIX=/usr/local/redis install
#由于Redis源码包中直接提供了 Makefile 文件,所以在解压完软件包后,不用先执行 ./configure 进行配置,可直接执行 make 与 make install 命令进行安装。

#创建redis工作目录
mkdir /usr/local/redis/{conf,log,data}

cp /opt/redis-7.0.13/redis.conf /usr/local/redis/conf/

useradd -M -s /sbin/nologin redis
chown -R redis.redis /usr/local/redis/

#环境变量
vim /etc/profile 
PATH=$PATH:/usr/local/redis/bin		#增加一行

source /etc/profile

//定义systemd服务管理脚本
vim /usr/lib/systemd/system/redis-server.service

[Unit]
Description=Redis Server
After=network.target

[Service]
User=redis
Group=redis
Type=forking
TimeoutSec=0
PIDFile=/usr/local/redis/log/redis_6379.pid
ExecStart=/usr/local/redis/bin/redis-server /usr/local/redis/conf/redis.conf
ExecReload=/bin/kill -s HUP $MAINPID
ExecStop=/bin/kill -s QUIT $MAINPID
PrivateTmp=true

[Install]
WantedBy=multi-user.target

修改redis配置文件Master节点操作

vim /usr/local/redis/conf/redis.conf

bind 0.0.0.0									#87行,修改监听地址为0.0.0.0
protected-mode no								#111行,将本机访问保护模式设置no
port 6379										#138行,Redis默认的监听6379端口
daemonize yes									#309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6379.pid		#341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6379.log"	#354行,指定日志文件
dir /usr/local/redis/data						#504行,指定持久化文件所在目录
#requirepass 123								#1037行,可选,设置redis密码
appendonly yes									#1380行,开启AOF

systemctl restart redis-server.service

修改 Redis 配置文件slave节点操作

vim /usr/local/redis/conf/redis.conf

bind 0.0.0.0									#87行,修改监听地址为0.0.0.0
protected-mode no								#111行,将本机访问保护模式设置no
port 6379										#138行,Redis默认的监听6379端口
daemonize yes									#309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6379.pid		#341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6379.log"	#354行,指定日志文件
dir /usr/local/redis/data						#504行,指定持久化文件所在目录
#requirepass abc123								#1037行,可选,设置redis密码
appendonly yes									#1380行,开启AOF
replicaof 192.168.88.22 6379					#528行,指定要同步的Master节点IP和端口
#masterauth 123								#535行,可选,指定Master节点的密码,仅在Master节点设置了requirepass

systemctl restart redis-server.service

验证主从效果

2.Redis 哨兵模式

  • 主从切换技术的方法是:当服务器宕机后,需要手动一台从机切换为主机,这需要人工干预,不仅费时费力而且还会造成一段时间内服务不可用。为了解决主从复制的缺点,就有了哨兵机制。
  • 哨兵的核心功能:在主从复制的基础上,哨兵引入了主节点的自动故障转移。

哨兵模式的作用

  • 监控:哨兵会不断地检查主节点和从节点是否运作正常。
  • 自动故障转移:当主节点不能正常工作时,哨兵会开始自动故障转移操作,它会将失效主节点的其中一个从节点升级为新的主节点,并让其它从节点改为复制新的主节点。
  • 通知(提醒):哨兵可以将故障转移的结果发送给客户端。

哨兵结构组成部分

  • 哨兵节点:哨兵系统由一个或多个哨兵节点组成,哨兵节点是特殊的redis节点,不存储数据。
  • 数据节点:主节点和从节点都是数据节点。

故障转移机制

1.由哨兵节点定期监控发现主节点是否出现了故障

  • 每个哨兵节点每隔1秒会向主节点、从节点及其它哨兵节点发送一次ping命令做一次心跳检测。如果主节点在一定时间范围内不回复或者是回复一个错误消息,那么这个哨兵就会认为这个主节点主观下线了(单方面的)。当超过半数哨兵节点认为该主节点主观下线了,这样就客观下线了。

2.当主节点出现故障

  • 此时哨兵节点会通过Raft算法(选举算法)实现选举机制共同选举出一个哨兵节点为leader,来负责处理主节点的故障转移和通知。所以整个运行哨兵的集群的数量不得少于3个节点。

3.由leader哨兵节点执行故障转移

  • 将某一个从节点升级为新的主节点,让其它从节点指向新的主节点;
  • 若原主节点恢复也变成从节点,并指向新的主节点;
  • 通知客户端主节点已经更换。

注意

  • 客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作。

主节点的选举

  1. 过滤掉不健康的(已下线的),没有回复哨兵 ping 响应的从节点。
  2. 选择配置文件中从节点优先级配置最高的。(replica-priority,默认值为100)
  3. 选择复制偏移量最大,也就是复制最完整的从节点。

哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式

哨兵模式搭建

实验准备

Master节点:192.168.88.22
Slave1节点:192.168.88.40
Slave2节点:192.168.88.13

systemctl stop firewalld
setenforce 0

#我们拿刚刚做过主从继续做哨兵模式搭建

修改 Redis 哨兵模式的配置文件(所有节点操作)

cp /opt/redis-7.0.13/sentinel.conf /usr/local/redis/conf/
chown redis.redis /usr/local/redis/conf/sentinel.conf

vim /usr/local/redis/conf/sentinel.conf

protected-mode no									#6行,关闭保护模式
port 26379											#10行,Redis哨兵默认的监听端口
daemonize yes										#15行,指定sentinel为后台启动
pidfile /usr/local/redis/log/redis-sentinel.pid		#20行,指定 PID 文件
logfile "/usr/local/redis/log/sentinel.log"			#25行,指定日志存放路径
dir /usr/local/redis/data							#54行,指定数据库存放路径
sentinel monitor mymaster 192.168.88.22 6379 2		#73行,修改 指定该哨兵节点监控192.168.88.22:6379这个主节点,该主节点的名称是mymaster,最后的2的含义与主节点的故障判定有关:至少需要2个哨兵节点同意,才能判定主节点故障并进行故障转移
#sentinel auth-pass mymaster abc123					#76行,可选,指定Master节点的密码,仅在Master节点设置了requirepass
sentinel down-after-milliseconds mymaster 3000		#114行,判定服务器down掉的时间周期,默认30000毫秒(30秒)
sentinel failover-timeout mymaster 180000			#214行,同一个sentinel对同一个master两次failover之间的间隔时间(180秒)

设置脚本VIP漂移

cd /usr/local/redis/conf

vim piaoyi.sh

#!/bin/bash
newmaster=$6
oldmaster="$(ifconfig ens33|awk 'NR==2{print $2}')"
vip="192.168.88.250"

if [ $newmaster == $oldmaster ]
then
    ifconfig ens33:1 $vip
else
    ifconfig ens33:1 down
fi

chmod +x piaoyi.sh
chown redis.redis *

vim piaoyi.sh

sentinel client-reconfig-script mymaster /usr/local/redis/conf/piaoyi.sh  #255行设置脚本路径

---在主节点---
ifconfig ens33:1 192.168.88.250

启动哨兵模式,查看哨兵信息

先启master,再启slave
cd /usr/local/redis/conf/
redis-sentinel sentinel.conf &

-----查看哨兵信息-----
redis-cli -p 26379 info Sentinel

故障模拟

#查看redis-server进程号:
ps -ef | grep redis
 

#在master节点上关闭redis服务
systemctl stop redis-server

#验证结果
tail -f /usr/local/redis/log/sentinel.log

redis-cli -p 26379 INFO Sentinel

3.Redis 群集模式

  • 集群,即Redis Cluster,是Redis 3.0开始引入的分布式存储方案。
  • 集群由多组节点(Node)组成,Redis的数据分布在这些节点中。集群中的节点分为主节点和从节点:只有主节点负责读写请求和集群信息的维护;从节点只进行主节点数据和状态信息的复制。

集群的作用

数据分区

  • 数据分区(或称数据分片)是集群最核心的功能。
  • 集群将数据分散到多个节点,一方面突破了Redis单机内存大小的限制,存储容量大大增加;另一方面每个主节点都可以对外提供读服务和写服务,大大提高了集群的响应能力。
  • Redis单机内存大小受限问题,在介绍持久化和主从复制时都有提及;例如,如果单机内存太大,bgsave和bgrewriteaof的fork操作可能导致主进程阻塞,主从环境下主机切换时可能导致从节点长时间无法提供服务,全量复制阶段主节点的复制缓冲区可能溢出。

高可用

  • 集群支持主从复制和主节点的自动故障转移(与哨兵类似);当任一节点发生故障时,集群仍然可以对外提供服务。

Redis集群的数据分片

  1. Redis集群引入了哈希槽的概念
  2. Redis集群有16384个哈希槽(编号0-16383)
  3. 集群的每组节点负责一部分哈希槽
  4. 每个Key通过CRC16校验后对16384取余来决定放置哪个哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作

以3个节点组成的集群为例

  • 节点A包含0到5460号哈希槽
  • 节点B包含5461到10922号哈希槽
  • 节点C包含10923到16383号哈希槽

Redis集群的主从复制模型

  • 集群中具有A、B、C三个节点,如果节点B失败了,整个集群就会因缺少5461-10922这个范围的槽而不可以用。
  • 为每个节点添加一个从节点A1、B1、C1整个集群便有三个Master节点和三个slave节点组成,在节点B失败后,集群选举B1位为的主节点继续服务。当B和B1都失败后,集群将不可用。

群集模式搭建

  • redis的集群一般需要6个节点,3主3从。方便起见,这里所有节点在同一台服务器上模拟:
  • 以端口号进行区分:3个主节点端口号:6001/6002/6003,对应的从节点端口号:6004/6005/6006。

 群集配置

cd /usr/local/redis/
mkdir -p redis-cluster/redis600{1..6}

for i in {1..6}
do
cp /opt/redis-7.0.13/redis.conf /usr/local/redis/redis-cluster/redis600$i
cp /opt/redis-7.0.13/src/redis-cli /opt/redis-7.0.13/src/redis-server /usr/local/redis/redis-cluster/redis600$i
done

开启群集功能

cd /usr/local/redis/redis-cluster/redis6001
vim redis.conf
#bind 127.0.0.1									#87行,注释掉bind项,默认监听所有网卡
protected-mode no								#111行,关闭保护模式
port 6001										#138行,修改redis监听端口
daemonize yes									#309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6001.pid		#341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6001.log"	#354行,指定日志文件
dir ./											#504行,指定持久化文件所在目录
appendonly yes									#1379行,开启AOF
cluster-enabled yes								#1576行,取消注释,开启群集功能
cluster-config-file nodes-6001.conf				#1584行,取消注释,群集名称文件设置
cluster-node-timeout 15000						#1590行,取消注释群集超时时间设置

其他5个配置文件相同修改注意修改端口号

启动redis节点

分别进入那六个文件夹,执行命令:redis-server redis.conf ,来启动redis节点
cd /usr/local/redis/redis-cluster/redis6001
redis-server redis.conf

或
for d in {1..6}
do
cd /usr/local/redis/redis-cluster/redis600$d
./redis-server redis.conf
done

ps -ef | grep redis

启动集群

redis-cli --cluster create 127.0.0.1:6001 127.0.0.1:6002 127.0.0.1:6003 127.0.0.1:6004 127.0.0.1:6005 127.0.0.1:6006 --cluster-replicas 1
#六个实例分为三组,每组一主一从,前面的做主节点,后面的做从节点。下面交互的时候 需要输入 yes 才可以创建。
--replicas 1 表示每个主节点有1个从节点。

测试群集

127.0.0.1:6001> set name yy
127.0.0.1:6001> cluster keyslot name	
redis-cli -p 6004 -c
127.0.0.1:6004> keys *							#对应的slave节点也有这条数据,但是别的节点没有
1) "name"

群集扩容

创建一个新的主,从节点
cd /usr/local/redis/redis-cluster
cp -a redis6001 redis6007
cp -a redis6001 redis6008

vim redis6007/redis.conf
#bind 127.0.0.1									#87行,注释掉bind项,默认监听所有网卡
protected-mode no								#111行,关闭保护模式
port 6007										#138行,修改redis监听端口
daemonize yes									#309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6007.pid		#341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6007.log"	#354行,指定日志文件
dir ./											#504行,指定持久化文件所在目录
appendonly yes									#1379行,开启AOF
cluster-enabled yes								#1576行,取消注释,开启群集功能
cluster-config-file nodes-6007.conf				#1584行,取消注释,群集名称文件设置
cluster-node-timeout 15000						#1590行,取消注释群集超时时间设置

6008相同操作,端口号修改

for d in {1..8}
do
cd /usr/local/redis/redis-cluster/redis600$d
./redis-server redis.conf
done

ps -ef | grep redis                             #启动redis
将127.0.0.1:6008创建为127.0.0.1:6007的从节点
redis-cli -p 6008
cluster replicate e44678abed249e22482559136bf45280fd3ac281   #指定6007的uuid号
分配槽数
redis-cli -p 6007 --cluster reshard 127.0.0.1:6001

How many slots do you want to move (from 1 to 16384)? 1000                    #指定转移槽的数量
What is the receiving node ID? e44678abed249e22482559136bf45280fd3ac281       #指定接收槽数量的主节点node ID
Please enter all the source node IDs.
Type 'all' to use all the nodes as source nodes for the hash slots.
Type 'done' once you entered all the source nodes IDs.
Source node #1: e1a033e07f0064e6400825b4ddbcd6680c032d10           #指定分配的主节点node ID
Source node #2: done                                               #输入完毕,开始转移

查看集群状态
redis-cli -p 6001 cluster nodes

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/318599.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Android 13.0 SystemUI下拉状态栏定制二 锁屏页面横竖屏时钟都居中功能实现一

1.前言 在13.0的系统rom定制化开发中,在关于systemui的锁屏页面功能定制中,由于在平板横屏锁屏功能中,时钟显示的很大,并且是在左旁边居中显示的, 由于需要和竖屏显示一样,所以就需要用到小时钟显示,然后同样需要居中,所以就来分析下相关的源码,来实现具体的功能 2.S…

图解智慧:数据可视化如何助你高效洞悉信息?

在信息爆炸的时代,数据扮演着越来越重要的角色,而数据可视化则成为解读和理解海量数据的得力工具。那么,数据可视化是如何帮助我们高效了解数据的呢?下面我就以可视化从业者的角度来简单聊聊这个话题。 无需深奥的专业知识&#x…

leetcode 每日一题 2024年01月14日 删除排序链表中的重复元素

题目 83. 删除排序链表中的重复元素 给定一个已排序的链表的头 head , 删除所有重复的元素,使每个元素只出现一次 。返回 已排序的链表 。 示例 1: 输入:head [1,1,2] 输出:[1,2]示例 2: 输入&#xff…

mac 上 ssh: connect to host localhost port 22: Connection refused

1。 问题 在搭建hadoop环境的时候 发现ssh localhost 在报错 2. 解决 打开系统设置 -> 共享 -> -> 在左边服务中选择 远程登录 注意红框这些选项慎重选择!!! 修改后,在终端再次 ssh localhost 发现登录成功了 如果…

2024美赛数学建模思路 - 复盘:校园消费行为分析

文章目录 0 赛题思路1 赛题背景2 分析目标3 数据说明4 数据预处理5 数据分析5.1 食堂就餐行为分析5.2 学生消费行为分析 建模资料 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 赛题背景 校园一卡通是集…

PEFT(高效微调)方法一览

PEFT论文解读2019-2023 2019-Adapter Tuning2019-PALs2020-Adapter-Fusion2021-Adapter-Drop2021-Diff-Pruning2021-Prefix-Tuning2021-Prompt-Tuning2021-WARP2021-LoRA2021-P-Tuning2021-P-Tuning-V22022-BitFit2022-MAM-Adpater2022-UniPELT2023-AdaLoRA总结 本文旨在梳理20…

RWKV入门

主要参考资料 B站视频《【项目原作解读】RWKV Foundation侯皓文:新型RNN模型RWKV,结合Transformer的并行化训练优势和RNN的高效推理》 RWKV官网: https://www.rwkv.com/ 目录 前言RWKV由来模型架构关键结果劣势未来展望 前言 RNN无法并行化,…

AES加解密模式

要想学习AES,首先要清楚三个基本的概念:密钥、填充、模式。 1、密钥 密钥是AES算法实现加密和解密的根本。对称加密算法之所以对称,是因为这类算法对明文的加密和解密需要使用同一个密钥。 AES支持三种长度的密钥: 128位&#xff…

html5基础入门

html5基础语法与标签 前言前端开发零基础入门介绍前端开发行业介绍:大前端时代:前端开发主要技术介绍学习方法IDE简介vscode快捷键: 总结 HTML语法与基础标签互联网基本原理HTTP协议(请求、响应)什么是前端、后端&…

python统计分析——随机抽样(np.random.choice)

参考资料:用python动手学统计学,帮助文档 import numpy as np import pandas as pddata_setnp.array([2,3,4,5,6,7]) np.random.choice(data_set,size2) (1)a,数据源,用一列数据作为抽样的数据源。 &…

大数据深度学习卷积神经网络CNN:CNN结构、训练与优化一文全解

文章目录 大数据深度学习卷积神经网络CNN:CNN结构、训练与优化一文全解一、引言1.1 背景和重要性1.2 卷积神经网络概述 二、卷积神经网络层介绍2.1 卷积操作卷积核与特征映射卷积核大小多通道卷积 步长与填充步长填充 空洞卷积(Dilated Convolution&…

八爪鱼拉拉手

欢迎来到程序小院 八爪鱼拉拉手 玩法&#xff1a;点击鼠标左键拖动移动八爪鱼&#xff0c;当他的手很忙的时候他会很高兴&#xff0c; 不同关卡不同的八爪鱼的位置摆放&#xff0c;快去闯关吧^^。开始游戏https://www.ormcc.com/play/gameStart/248 html <div id"gam…

Gauss消去法(C++)

文章目录 算法描述顺序Gauss消去法列选主元Gauss消去法全选主元Gauss消去法Gauss-Jordan消去法 算法实现顺序Gauss消去法列选主元Gauss消去法全选主元Gauss消去法列选主元Gauss-Jordan消去法 实例分析 Gauss消去法是求解线性方程组较为有效的方法, 它主要包括两个操作, 即消元和…

开源云原生安全的现状

近年来&#xff0c;人们非常重视软件供应链的安全。尤其令人担忧的是开源软件发行版中固有的风险越来越多。这引发了围绕云原生开源安全的大量开发&#xff0c;其形式包括软件物料清单 (SBOM)、旨在验证 OSS 包来源的项目等。 许多组织循环使用大型开源包&#xff0c;但只使用…

NLP技术在搜索推荐场景中的应用

NLP技术在搜索推荐中的应用非常广泛&#xff0c;例如在搜索广告的CTR预估模型中&#xff0c;NLP技术可以从语义角度提取一些对CTR预测有效的信息&#xff1b;在搜索场景中&#xff0c;也经常需要使用NLP技术确定展现的物料与搜索query的相关性&#xff0c;过滤掉相关性较差的物…

设计模式——抽象工厂模式(Abstract Factory Pattern)

概述 抽象工厂模式的基本思想是将一些相关的产品组成一个“产品族”&#xff0c;由同一个工厂统一生产。在工厂方法模式中具体工厂负责生产具体的产品&#xff0c;每一个具体工厂对应一种具体产品&#xff0c;工厂方法具有唯一性&#xff0c;一般情况下&#xff0c;一个具体工厂…

YOLOv5改进 | 二次创新篇 | 结合iRMB和EMA形成全新的iEMA机制(全网独家创新)

一、本文介绍 本文给大家带来的改进机制是二次创新的机制,二次创新是我们发表论文中关键的一环,为什么这么说,从去年的三月份开始对于图像领域的论文发表其实是变难的了,在那之前大家可能搭搭积木的情况下就可以简单的发表一篇论文,但是从去年开始单纯的搭积木其实发表论…

第1课 ROS 系统介绍

1.ROS操作系统介绍 在学习ROS 系统前&#xff0c;我们需要先了解操作系统的定义。操作系统&#xff0c;顾名思义&#xff0c;即提供部分软件和硬件的接口&#xff0c;以供用户直接使用。因此&#xff0c;针对不同的平台、不同的功能&#xff0c;需要采用不同的操作系统来完成底…

Three.js 纹理贴图的实现

在线工具推荐&#xff1a; 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 纹理贴图简介 当我们创建一个网格时&#xff0c;比如我们不起眼的立…

大模型开启应用时代 数钉科技一锤定音

叮叮叮叮&#xff01;数钉智造大模型&#xff0c;“定音”强势发布&#xff01; 随着科技的飞速发展&#xff0c;大模型技术已逐渐成为推动产业变革的核心力量。在这一浪潮中&#xff0c;数钉科技凭借深厚的技术积累和敏锐的市场洞察力&#xff0c;成功利用大模型技术搭建起智能…