C++力扣题目617--合并二叉树

给你两棵二叉树: root1 和 root2 。

想象一下,当你将其中一棵覆盖到另一棵之上时,两棵树上的一些节点将会重叠(而另一些不会)。你需要将这两棵树合并成一棵新二叉树。合并的规则是:如果两个节点重叠,那么将这两个节点的值相加作为合并后节点的新值;否则,不为 null 的节点将直接作为新二叉树的节点。

返回合并后的二叉树。

注意: 合并过程必须从两个树的根节点开始。

示例 1:

输入:root1 = [1,3,2,5], root2 = [2,1,3,null,4,null,7]
输出:[3,4,5,5,4,null,7]

示例 2:

输入:root1 = [1], root2 = [1,2]
输出:[2,2]

 

思路

相信这道题目很多同学疑惑的点是如何同时遍历两个二叉树呢?

其实和遍历一个树逻辑是一样的,只不过传入两个树的节点,同时操作。

#递归

二叉树使用递归,就要想使用前中后哪种遍历方式?

本题使用哪种遍历都是可以的!

我们下面以前序遍历为例。

动画如下:

617.合并二叉树

那么我们来按照递归三部曲来解决:

  1. 确定递归函数的参数和返回值:

首先要合入两个二叉树,那么参数至少是要传入两个二叉树的根节点,返回值就是合并之后二叉树的根节点。

代码如下:

TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {

  1. 确定终止条件:

因为是传入了两个树,那么就有两个树遍历的节点t1 和 t2,如果t1 == NULL 了,两个树合并就应该是 t2 了(如果t2也为NULL也无所谓,合并之后就是NULL)。

反过来如果t2 == NULL,那么两个数合并就是t1(如果t1也为NULL也无所谓,合并之后就是NULL)。

代码如下:

if (t1 == NULL) return t2; // 如果t1为空,合并之后就应该是t2
if (t2 == NULL) return t1; // 如果t2为空,合并之后就应该是t1


 

  1. 确定单层递归的逻辑:

单层递归的逻辑就比较好写了,这里我们重复利用一下t1这个树,t1就是合并之后树的根节点(就是修改了原来树的结构)。

那么单层递归中,就要把两棵树的元素加到一起。

t1->val += t2->val;

接下来t1 的左子树是:合并 t1左子树 t2左子树之后的左子树。

t1 的右子树:是 合并 t1右子树 t2右子树之后的右子树。

最终t1就是合并之后的根节点。

代码如下:

t1->left = mergeTrees(t1->left, t2->left);
t1->right = mergeTrees(t1->right, t2->right);
return t1;

此时前序遍历,完整代码就写出来了,如下:

class Solution {
public:
    TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
        if (t1 == NULL) return t2; // 如果t1为空,合并之后就应该是t2
        if (t2 == NULL) return t1; // 如果t2为空,合并之后就应该是t1
        // 修改了t1的数值和结构
        t1->val += t2->val;                             // 中
        t1->left = mergeTrees(t1->left, t2->left);      // 左
        t1->right = mergeTrees(t1->right, t2->right);   // 右
        return t1;
    }
};

那么中序遍历也是可以的,代码如下:

class Solution {
public:
    TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
        if (t1 == NULL) return t2; // 如果t1为空,合并之后就应该是t2
        if (t2 == NULL) return t1; // 如果t2为空,合并之后就应该是t1
        // 修改了t1的数值和结构
        t1->left = mergeTrees(t1->left, t2->left);      // 左
        t1->val += t2->val;                             // 中
        t1->right = mergeTrees(t1->right, t2->right);   // 右
        return t1;
    }
};

后序遍历依然可以,代码如下:

class Solution {
public:
    TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
        if (t1 == NULL) return t2; // 如果t1为空,合并之后就应该是t2
        if (t2 == NULL) return t1; // 如果t2为空,合并之后就应该是t1
        // 修改了t1的数值和结构
        t1->left = mergeTrees(t1->left, t2->left);      // 左
        t1->right = mergeTrees(t1->right, t2->right);   // 右
        t1->val += t2->val;                             // 中
        return t1;
    }
};

但是前序遍历是最好理解的,我建议大家用前序遍历来做就OK。

如上的方法修改了t1的结构,当然也可以不修改t1和t2的结构,重新定义一个树。

不修改输入树的结构,前序遍历,代码如下:

class Solution {
public:
    TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
        if (t1 == NULL) return t2;
        if (t2 == NULL) return t1;
        // 重新定义新的节点,不修改原有两个树的结构
        TreeNode* root = new TreeNode(0);
        root->val = t1->val + t2->val;
        root->left = mergeTrees(t1->left, t2->left);
        root->right = mergeTrees(t1->right, t2->right);
        return root;
    }
};

#迭代法

使用迭代法,如何同时处理两棵树呢?

思路我们在二叉树:我对称么? (opens new window)中的迭代法已经讲过一次了,求二叉树对称的时候就是把两个树的节点同时加入队列进行比较。

本题我们也使用队列,模拟的层序遍历,代码如下:

class Solution {
public:
    TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
        if (t1 == NULL) return t2;
        if (t2 == NULL) return t1;
        queue<TreeNode*> que;
        que.push(t1);
        que.push(t2);
        while(!que.empty()) {
            TreeNode* node1 = que.front(); que.pop();
            TreeNode* node2 = que.front(); que.pop();
            // 此时两个节点一定不为空,val相加
            node1->val += node2->val;

            // 如果两棵树左节点都不为空,加入队列
            if (node1->left != NULL && node2->left != NULL) {
                que.push(node1->left);
                que.push(node2->left);
            }
            // 如果两棵树右节点都不为空,加入队列
            if (node1->right != NULL && node2->right != NULL) {
                que.push(node1->right);
                que.push(node2->right);
            }

            // 当t1的左节点 为空 t2左节点不为空,就赋值过去
            if (node1->left == NULL && node2->left != NULL) {
                node1->left = node2->left;
            }
            // 当t1的右节点 为空 t2右节点不为空,就赋值过去
            if (node1->right == NULL && node2->right != NULL) {
                node1->right = node2->right;
            }
        }
        return t1;
    }
};


 

#拓展

当然也可以秀一波指针的操作,这是我写的野路子,大家就随便看看就行了,以防带跑偏了。

如下代码中,想要更改二叉树的值,应该传入指向指针的指针。

代码如下:(前序遍历)

class Solution {
public:
    void process(TreeNode** t1, TreeNode** t2) {
        if ((*t1) == NULL && (*t2) == NULL) return;
        if ((*t1) != NULL && (*t2) != NULL) {
            (*t1)->val += (*t2)->val;
        }
        if ((*t1) == NULL && (*t2) != NULL) {
            *t1 = *t2;
            return;
        }
        if ((*t1) != NULL && (*t2) == NULL) {
            return;
        }
        process(&((*t1)->left), &((*t2)->left));
        process(&((*t1)->right), &((*t2)->right));
    }
    TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
        process(&t1, &t2);
        return t1;
    }
};

#总结

合并二叉树,也是二叉树操作的经典题目,如果没有接触过的话,其实并不简单,因为我们习惯了操作一个二叉树,一起操作两个二叉树,还会有点懵懵的。

这不是我们第一次操作两棵二叉树了,在二叉树:我对称么? (opens new window)中也一起操作了两棵二叉树。

迭代法中,一般一起操作两个树都是使用队列模拟类似层序遍历,同时处理两个树的节点,这种方式最好理解,如果用模拟递归的思路的话,要复杂一些。

最后拓展中,我给了一个操作指针的野路子,大家随便看看就行了,如果学习C++的话,可以再去研究研究。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/316272.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

“+”连接符用法(Java)

""可以作为连接符使用&#xff0c;如果与字符串一起运算&#xff0c;结果依旧是一个字符串 比如"aaa"6 --> "aaa6" 在打印中&#xff0c;能算就算&#xff0c;不能计算的时候就会连接在一起 注意先后顺序 ascii编码&#xff1a; 字符串&…

VASP结合vaspkit+ShengBTE计算热电优值(一)

电导率σ&#xff0c;塞贝克系数S的计算&#xff1a; 使用vaspkit计算处对应的物理量&#xff0c;具体流程为&#xff1a; 准备好计算的材料对应的POSCAR。如果是二维材料可以使用vaspkit 的921或923功能对二维材料POSCAR进行标准化。进行结构优化。使用 vaspkit-681命令生成高…

卡尔曼滤波:理论与代码

卡尔曼滤波&#xff1a;理论与代码 引言 卡尔曼滤波是一种用于估计系统状态的优化技术&#xff0c;特别适用于含有噪声的测量数据和系统动态变化的情况。本文将简单探讨卡尔曼滤波的理论基础、数学公式的推导&#xff0c;并通过Python代码示例演示其在实际应用中的效果。 一…

python,序列的切片

序列的切片就是指从一个序列中取出子序列 语法&#xff1a; 序列[起始下标&#xff1a;结束下标&#xff1a;步长] 步长为1表示一个一个的取元素&#xff0c;步长为2表示每次跳过一个元素的取元素&#xff0c;步长为负数表示反向切片&#xff0c;取元素时取到结束下标&#…

养老数据监控大屏:护航金色晚年,打造智慧养老新标杆

随着老龄化社会的加速到来&#xff0c;养老服务的质量和效率成为了社会关注的焦点。如何运用现代科技手段提升养老服务水平&#xff0c;让老年人享受更加舒适、便捷的晚年生活&#xff0c;成为了我们面临的重要课题。在这一背景下&#xff0c;养老数据监控大屏应运而生&#xf…

2-《Java并发编程实战》(Java Concurrency in Practice) 代码示例

说明 这是针对《Java并发编程实战》(Java Concurrency in Practice)一书中的示例代码进行扩展&#xff0c;并且进行验证的完整代码&#xff0c;具体背景可看这篇文章&#xff1a;1-《Java并发编程实战》(Java Concurrency in Practice) 代码示例 下面的示例代码都是针对书中的&…

API对象上千个,有啥关联性,kubectl-tree一键搞定

关注【云原生百宝箱】公众号&#xff0c;获取更多云原生消息 "kubectl-tree 是一款强大的 kubectl 插件&#xff0c;通过 ownerReferences 实现 Kubernetes 对象之间的所有权关系探索。相较于 kubectl lineage&#xff0c;它不仅更全面理解 API 对象的逻辑关系&#xff0c…

Linux第27步_在虚拟机中安装“设备树编译工具”

设备树英文名字叫做Device tree&#xff0c;用来描述板子硬件信息的&#xff0c;比如开发板上的 CPU有几个核 、每个CPU核主频是多少&#xff0c;IIC、SPI这些外设的寄存器范围是多少&#xff0c;IIC接口下都挂了哪些设备等等。 设备树文件是一种文本格式的文件&#xff0c;方…

超声波眼镜清洗机清洗眼镜会有伤害吗?适合洗眼镜超声波清洗机

眼镜作为日常生活中不可或缺的辅助视力工具&#xff0c;经常需要清洁保养以确保视力清晰和舒适佩戴。随着科技的发展&#xff0c;超声波眼镜清洗机成为越来越受欢迎的清洁方式。然而&#xff0c;很多人可能会担心使用超声波清洗机是否会对眼镜造成损害。但是可以很可以的告诉大…

基于cy7c68013的逻辑分析仪nanoDLA全套软件linux下编译测试

0. 环境 - win10 - ubuntu22 - nanoDLA 提前获取到源码&#xff1a;-> 浏览器打开 https://github.com/wuxx/nanoDLA -> Download as zip. 硬件就直接用taobao买到的&#xff0c;原理图是 1. win10出厂测试 1.1 安装pulseview nanoDLA-master\software\pulseview-0.4.…

深度学习烦人的基础知识(2)---Nvidia-smi功率低,util高---nvidia_smi参数详解

文章目录 问题现象解释解决方案 磨刀不误砍柴工--nvidia-smi参数解读 问题 如下图所示&#xff0c;GPU功率很低&#xff0c;Util占用率高。这个训练时不正常的&#xff01; 现象解释 Pwr是指GPU运行时耗电情况&#xff0c;如图中GPU满载是300W&#xff0c;目前是86W与GPU2的…

【LeetCode:530. 二叉搜索树的最小绝对差 | 二叉搜索树】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…

Java--Spring项目生成雪花算法数字(Twitter SnowFlake)

文章目录 前言步骤查看结果 前言 分布式系统常需要全局唯一的数字作为id&#xff0c;且该id要求有序&#xff0c;twitter的SnowFlake解决了这种需求&#xff0c;生成了符合条件的这种数字&#xff0c;本文将提供一个接口获取雪花算法数字。以下为代码。 步骤 SnowFlakeUtils …

1Panel应用推荐:AList开源文件列表工具

1Panel&#xff08;github.com/1Panel-dev/1Panel&#xff09;是一款现代化、开源的Linux服务器运维管理面板&#xff0c;它致力于通过开源的方式&#xff0c;帮助用户简化建站与运维管理流程。为了方便广大用户快捷安装部署相关软件应用&#xff0c;1Panel特别开通应用商店&am…

C++力扣题目700--二叉搜索树中的搜索

给定二叉搜索树&#xff08;BST&#xff09;的根节点 root 和一个整数值 val。 你需要在 BST 中找到节点值等于 val 的节点。 返回以该节点为根的子树。 如果节点不存在&#xff0c;则返回 null 。 示例 1: 输入&#xff1a;root [4,2,7,1,3], val 2 输出&#xff1a;[2,1,…

131本!2023中科院分区晋升1区期刊名单出炉

2023年12月27日&#xff0c;中科院分区正式发布《2023年中国科学院文献情报中心期刊分区表》。今年期刊分区表包括SCIE、SSCI、A&HCI&#xff0c;以及ESCI中国期刊&#xff0c;共设置了包括自然科学、人文科学和社会科学在内的21个大类。 关注公众号“Unionpub学术”&…

国际版WPS Office 18.6.1

【应用名称】&#xff1a;WPS Office 【适用平台】&#xff1a;#Android 【软件标签】&#xff1a;#WPS 【应用版本】&#xff1a;18.6.1 【应用大小】&#xff1a;160MB 【软件说明】&#xff1a;软件日常更新。WPS Office是使用人数最多的移动办公软件。独有手机阅读模式…

Vim一键配置指南,打造高效率C++开发环境

文章目录 前言安装与卸载功能演示gcc/g升级问题 前言 Vim作为当下最受欢迎的文本编译器之一&#xff0c;不仅具有强大的文本编辑功能&#xff0c;还提供了高度的可定制性。用户可以根据自己的喜好自定义配置&#xff0c;并且通过自己编写插件或者使用现有的插件来扩展Vim的功能…

【MATLAB】 多元变分模态分解MVMD信号分解算法

有意向获取代码&#xff0c;请转文末观看代码获取方式~ 1 基本定义 多元变分模态分解&#xff08;MVMD&#xff09;是一种信号分解方法&#xff0c;可以自适应地实现信号的频域剖分及各分量的有效分离。 MVMD算法的具体步骤如下&#xff1a; 假设原始信号S被分解为K个分量μ…

简易机器学习笔记(十一)opencv 简易使用-人脸识别、分类任务

前言 前段时间摸了下机器学习&#xff0c;然后我发现其实openCV还是一个很浩瀚的库的&#xff0c;现在也正在写一篇有关yolo的博客&#xff0c;不过感觉理论偏多&#xff0c;所以在学yolo之前先摸一下opencv&#xff0c;简单先写个项目感受感受opencv。 流程 openCV实际上已…