时间序列预测 — VMD-LSTM实现单变量多步光伏预测(Tensorflow):单变量转为多变量预测多变量

 专栏链接:https://blog.csdn.net/qq_41921826/category_12495091.html

专栏内容

 所有文章提供源代码、数据集、效果可视化

 文章多次上领域内容榜、每日必看榜单、全站综合热榜

时间序列预测存在的问题

 现有的大量方法没有真正的预测未来值,只是用历史数据做验证

 利用时间序列分解算法存在信息泄露的问题:有人用emd+lstm对时间序列进行预测,是否存在原理上的问题? - 知乎


目录

1 数据处理

1.1 导入库文件

1.2 导入数据集

​1.3 缺失值分析

2 VMD经验模态分解

2.1 VMD分解实验

2.2 VMD-LSTM预测思路

3 构造训练数据

4 LSTM模型训练

5 LSTM模型预测

5.1 分量预测

5.2 可视化


1 数据处理

1.1 导入库文件

import time
import datetime
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt  
from sampen import sampen2  # sampen库用于计算样本熵
from vmdpy import VMD  # VMD分解库
from itertools import cycle

import tensorflow as tf 
from sklearn.cluster import KMeans
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error, mean_absolute_percentage_error 
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation, Dropout, LSTM, GRU, Reshape, BatchNormalization
from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping, ModelCheckpoint
from tensorflow.keras.optimizers import Adam

# 忽略警告信息
import warnings
warnings.filterwarnings('ignore'))  
plt.rcParams['font.sans-serif'] = ['SimHei']     # 显示中文
plt.rcParams['axes.unicode_minus'] = False  # 显示负号
plt.rcParams.update({'font.size':18})  #统一字体字号

1.2 导入数据集

实验数据集采用数据集8:新疆光伏风电数据集(下载链接),数据集包括组件温度(℃) 、温度(°)    气压(hPa)、湿度(%)、总辐射(W/m2)、直射辐射(W/m2)、散射辐射(W/m2)、实际发电功率(mw)特征,时间间隔15min。对数据进行可视化:

# 导入数据
data_raw = pd.read_excel("E:\\课题\\08数据集\\新疆风电光伏数据\\光伏2019.xlsx")
data_raw
from itertools import cycle
# 可视化数据
def visualize_data(data, row, col):
    cycol = cycle('bgrcmk')
    cols = list(data.columns)
    fig, axes = plt.subplots(row, col, figsize=(16, 4))
    fig.tight_layout()
    if row == 1 and col == 1:  # 处理只有1行1列的情况
        axes = [axes]  # 转换为列表,方便统一处理
    for i, ax in enumerate(axes.flat):
        if i < len(cols):
            ax.plot(data.iloc[:,i], c=next(cycol))
            ax.set_title(cols[i])
        else:
            ax.axis('off')  # 如果数据列数小于子图数量,关闭多余的子图
    plt.subplots_adjust(hspace=0.6)
    plt.show()

visualize_data(data_raw.iloc[:,1:], 2, 4)

​单独查看部分功率数据,发现有较强的规律性。

​1.3 缺失值分析

首先查看数据的信息,发现并没有缺失值

data_raw.info()

​ 进一步统计缺失值

data_raw.isnull().sum()

2 VMD经验模态分解

2.1 VMD分解实验

使用VMD将目标信号分解成若干个模态,进一步可视化分解结果

# VMD分解函数
# signal: 输入信号
# alpha: 正则化参数
# tau: 时间尺度参数
# K: 分量数量
# DC: 是否包括直流分量
# init: 初始化方法
# tol: 收敛容限
# n_ite: 最大迭代次数
def vmd_decompose(series=None, alpha=2000, tau=0, K=6, DC=0, init=1, tol=1e-7, draw=True): 
    # 得到 VMD 分解后的各个分量、分解后的信号和频率
    imfs_vmd, imfs_hat, omega = VMD(series, alpha, tau, K, DC, init, tol)  
    # 将 VMD 分解分量转换为 DataFrame, 并重命名
    df_vmd = pd.DataFrame(imfs_vmd.T)
    df_vmd.columns = ['imf'+str(i) for i in range(K)]
    return df_vmd

因为只是单变量预测,只选取实际发电功率(mw)数据进行实验 

df_vmd = vmd_decompose(data_raw['实际发电功率(mw)'])  # 对 df_raw_data['AQI'] 进行 VMD 分解,并将结果赋值给 df_vmd
# 绘制 df_vmd 的数据,以子图形式显示每个分量
ax = df_vmd.plot(title='VMD Decomposition', figsize=(16,8), subplots=True,fontsize=16)
for a in ax:
    a.legend(loc='upper right',prop={'size': 14})
    plt.subplots_adjust(hspace=0.5)

​查看分解后的数据:

df_vmd

​这里我们验证一下分解效果,通过分解变量求和和实际功率值进行可视化比较,发现基本相同。

# 验证分解效果
plt.figure(dpi=100,figsize=(14,5))
plt.plot(df_vmd.iloc[:96*10,:-1].sum(axis=1))
plt.plot(data_raw['实际发电功率(mw)'][:96*10])
plt.legend(['VMD分解求和','原始负荷']) 
# 坐标描述
plt.xlabel('时间')
plt.ylabel('功率(kW)')

2.2 VMD-LSTM预测思路

这里利用VMD-LSTM进行预测的思路是通过VMD将原始功率分解为多个变量,然后将每个分解变量都进行预测,接着将预测的结果添加到历史数据中进行滚动预测,得到需要预测的步数,最后将每个分解变量的预测结果相加得到最终的预测结果。

3 构造训练数据

构造数据前先将数据变为数值类型

df_vmd = df_vmd.values

构造训练数据,也是真正预测未来的关键。首先设置预测的timesteps时间步、predict_steps预测的步长(预测的步长应该比总的预测步长小),length总的预测步长,参数可以根据需要更改。

timesteps = 96*7 #构造x,为72个数据,表示每次用前72个数据作为一段
predict_steps = 12 #构造y,为12个数据,表示用后12个数据作为一段
length = 96 #预测多步,预测96个数据,每次预测96个,想想要怎么构造预测才能满足96?
feature_num = 6 #特征个数

通过前timesteps个数据预测后面predict_steps个数据,需要对数据集进行滚动划分(也就是前timesteps行的数据和后predict_steps行的数据训练,后面预测时就可通过timesteps行数据预测未来的predict_steps行数据)。这里需要注意的是,因为是多变量预测多变量,特征就是标签(例如,前5行[imf_0, imf_1, imf_2, imf_3, imf_4, imf_5]预测第6行[imf_0, imf_1, imf_2, imf_3, imf_4, imf_5],划分数据集时,就用前5行当做train_x,第6行作为train_y,此时的train_y有多列,而不是只有1列)。

# 构造数据集,用于真正预测未来数据
# 整体的思路也就是,前面通过前timesteps个数据训练后面的predict_steps个未来数据
# 预测时取出前timesteps个数据预测未来的predict_steps个未来数据。
def create_dataset(datasetx, datasety=None, timesteps=96*7, predict_size=12):
    datax = []  # 构造x
    datay = []  # 构造y
    for each in range(len(datasetx) - timesteps - predict_size):
        x = datasetx[each:each + timesteps]
        # 判断是否是单变量分解还是多变量分解
        if datasety is not None:
            y = datasety[each + timesteps:each + timesteps + predict_size]
        else:
            y = datasetx[each + timesteps:each + timesteps + predict_size]
        datax.append(x)
        datay.append(y)
    return datax, datay

​数据处理前,需要对数据进行归一化,按照上面的方法划分数据,这里返回划分的数据和归一化模型(变量和多变量的归一化不同,多变量归一化需要将X和Y分开归一化,不然会出现信息泄露的问题),此时的归一化相当于是单变量归一化,函数的定义如下:

# 数据归一化操作
def data_scaler(datax, datay=None, timesteps=36, predict_steps=6):
    # 数据归一化操作
    scaler1 = MinMaxScaler(feature_range=(0, 1))   
    datax = scaler1.fit_transform(datax)
    # 用前面的数据进行训练,留最后的数据进行预测
    # 判断是否是单变量分解还是多变量分解
    if datay is not None:
        scaler2 = MinMaxScaler(feature_range=(0, 1))
        datay = scaler2.fit_transform(datay)
        trainx, trainy = create_dataset(datax, datay, timesteps, predict_steps)
        trainx = np.array(trainx)
        trainy = np.array(trainy)
        return trainx, trainy, scaler1, scaler2
    else:
        trainx, trainy = create_dataset(datax, timesteps=timesteps, predict_size=predict_steps)
        trainx = np.array(trainx)
        trainy = np.array(trainy)
        return trainx, trainy, scaler1, None

然后分解的数据进行划分和归一化。通过前7天的96*7行数据预测后一天的96个数据,需要对数据集进行滚动划分(也就是前96*7行的数据和后12行的数据训练,后面预测时就可通过96*7行数据测未来的12行数据,然后将12行预测值添加到历史数据中,历史数据变为96*7+12个,再取出后96*7行数据进行预测,得到12行预测值,滚动进行预测直到预测完成,注意此时的预测值是行而不是个)

trainx, trainy, scalerx, scalery = data_scaler(df_vmd, timesteps=timesteps, predict_steps=predict_steps)

4 LSTM模型训练

首先划分训练集、测试集、验证数据:

train_x = trainx[:int(trainx.shape[0] * 0.8)]
train_y = trainy[:int(trainy.shape[0] * 0.8)]
test_x = trainx[int(trainx.shape[0] * 0.8):]
test_y = trainy[int(trainy.shape[0] * 0.8):]
test_x.shape, test_y.shape, train_x.shape, train_y.shape

首先搭建模型的常规操作,然后使用训练数据trainx和trainy进行训练,进行50个epochs的训练,每个batch包含64个样本(建议使用GPU进行训练)。

# 搭建LSTM训练函数
def LSTM_model_train(trainx, trainy, valx, valy, timesteps, predict_steps):
    # 调用GPU加速
    gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
    for gpu in gpus:
        tf.config.experimental.set_memory_growth(gpu, True)

    # 搭建LSTM模型
    start_time = datetime.datetime.now()
    model = Sequential()
    model.add(LSTM(128, input_shape=(timesteps, trainx.shape[2]), return_sequences=True))
    model.add(BatchNormalization())  # 添加BatchNormalization层
    model.add(Dropout(0.2))
    model.add(LSTM(64, return_sequences=False))
    model.add(Dense(predict_steps * trainy.shape[2]))
    model.add(Reshape((predict_steps, trainy.shape[2])))

    # 使用自定义的Adam优化器
    opt = Adam(learning_rate=0.001)
    model.compile(loss="mean_squared_error", optimizer=opt)
    
    # 添加早停和模型保存的回调函数
    es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=10)
    mc = ModelCheckpoint('best_model.h5', monitor='val_loss', mode='min', save_best_only=True)

    # 训练模型,这里我假设你有一个验证集(valx, valy)
    history = model.fit(trainx, trainy, validation_data=(valx, valy), epochs=50, batch_size=64, callbacks=[es, mc])

    # 记录训练损失
    loss_history = history.history['loss']

    end_time = datetime.datetime.now()
    running_time = end_time - start_time

    return model, loss_history, running_time

然后进行训练,将训练的模型、损失和训练时间保存。

#模型训练
model, loss_history, running_time = LSTM_model_train(train_x, train_y, test_x, test_y, timesteps, predict_steps)
# 将模型保存为文件
model.save('emd_lstm_model.h5')

5 LSTM模型预测

5.1 分量预测

下面介绍文章中最重要,也是真正没有未来特征的情况下预测未来标签的方法。整体的思路也就是取出预测前96*6行数据预测未来的12行数据,然后见12行数据添加进历史数据,再预测12行数据,滚动预测。因为每次只能预测12行数据,但是我要预测96个数据,所以采用的就是循环预测的思路。每次预测的12行数据,添加到数据集中充当预测x,然后在预测新的12行y,再添加到预测x列表中,如此往复,最终预测出96行。(注意多变量预测多变量预测的是多列,预测单变量只有一列)

# #滚动predict
# #因为每次只能预测12个数据,但是我要预测96个数据,所以采用的就是循环预测的思路。
# #每次预测的12个数据,添加到数据集中充当预测x,然后在预测新的12个y,再添加到预测x列表中,如此往复,最终预测出96个点。
def predict_using_LSTM(model, data, timesteps, predict_steps, feature_num, length, scaler):
    predict_xlist = np.array(data).reshape(1, timesteps, feature_num) 
    predict_y = np.array([]).reshape(0, feature_num)  # 初始化为空的二维数组
    print('predict_xlist', predict_xlist.shape)
    
    while len(predict_y) < length:
        # 从最新的predict_xlist取出timesteps个数据,预测新的predict_steps个数据
        predictx = predict_xlist[:,-timesteps:,:]
        # 变换格式,适应LSTM模型
        predictx = np.reshape(predictx, (1, timesteps, feature_num)) 
        print('predictx.shape', predictx.shape)
        
        # 预测新值
        lstm_predict = model.predict(predictx)
        print('lstm_predict.shape', lstm_predict.shape)
        
        # 滚动预测
        # 将新预测出来的predict_steps个数据,加入predict_xlist列表,用于下次预测
        print('predict_xlist.shape', predict_xlist.shape)
        predict_xlist = np.concatenate((predict_xlist, lstm_predict), axis=1)
        print('predict_xlist.shape', predict_xlist.shape)
        
        # 预测的结果y,每次预测的12个数据,添加进去,直到预测length个为止
        lstm_predict = scaler.inverse_transform(lstm_predict.reshape(predict_steps, feature_num))
        predict_y = np.concatenate((predict_y, lstm_predict), axis=0)
        print('predict_y', predict_y.shape)
        
    return predict_y

然后对数据进行预测,得到预测结果。

from tensorflow.keras.models import load_model
model = load_model('emd_lstm_model.h5')
pre_x = scalerx.fit_transform(df_vmd[-96*8:-96])
y_predict = predict_using_LSTM(model, pre_x, timesteps, predict_steps, feature_num, length, scalerx)

5.2 可视化

对预测的各分解变量和总的预测结果进行可视化。

#分量预测结果
for i in range(y_predict.shape[1]):
    fig, ax = plt.subplots(dpi=100, figsize=(14, 5))
    ax.plot(df_vmd[-96:, -i], markevery=5, label='IMF'+str(i)+'_true')
    ax.plot(y_predict[:, -i], markevery=5, label='IMF'+str(i)+'_predict')
    ax.set_xlabel('时间')
    ax.set_ylabel('预测值')
    ax.legend(loc = 'upper right')
    plt.show()
# 总预测结果
plt.figure(dpi=100, figsize=(14, 5))
plt.plot(np.sum(y_predict[:, :-1], axis=1), markevery=5, label = 'all_predict')
plt.plot(df_vmd[-96:,-1], markevery=5, label = 'all_true')
plt.legend(loc = 'upper right')

最后对预测结果计算误差。

# 预测并计算误差和可视化
def error_and_plot(y_true,y_predict):
    # 计算误差
    r2 = r2_score(y_true, y_predict)
    rmse = mean_squared_error(y_true, y_predict, squared=False)
    mae = mean_absolute_error(y_true, y_predict)
    mape = mean_absolute_percentage_error(y_true, y_predict)
    print("r2: %.2f\nrmse: %.2f\nmae: %.2f\nmape: %.2f" % (r2, rmse, mae, mape))
    
    # 预测结果可视化
    cycol = cycle('bgrcmk')
    plt.figure(dpi=100, figsize=(14, 5))
    plt.plot(y_true, c=next(cycol), markevery=5)
    plt.plot(y_predict, c=next(cycol), markevery=5)
    plt.legend(['y_true', 'y_predict'])
    plt.xlabel('时间')
    plt.ylabel('功率(kW)')
    plt.show()   
    
    return 0
error_and_plot(df_vmd[-96:,-1], np.sum(y_predict[:, :-1], axis=1) )

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/314179.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

STM32L051使用HAL库操作实例(14)- ADC采集电压

目录 一、前言 二、ADC外设简要说明 三、STM32CubeMX配置&#xff08;本文使用的STM32CubeMX版本为6.1.2&#xff09; 1.MCU选型 2.时钟使能 3.外部时钟配置 4.串口配置 5.ADC引脚配置 6.配置STM32CubeMX生成工程文件 7.点击GENERATE CODE生成工程文件 四、工程源码 …

20240112让移远mini-PCIE接口的4G模块EC20在Firefly的AIO-3399J开发板的Android11下跑通【DTS部分】

20240112让移远mini-PCIE接口的4G模块EC20在Firefly的AIO-3399J开发板的Android11下跑通【DTS部分】 2024/1/12 16:20 https://blog.csdn.net/u010164190/article/details/79096345 [Android6.0][RK3399] PCIe 接口 4G模块 EC20 调试记录 https://blog.csdn.net/hnjztyx/artic…

vue3+ts+vite+elementPlus后台管理系统学习总结01

vue3tsviteelementPlus后台管理系统学习总结01 一&#xff1a;运行源代码一&#xff1a;按照博客一步步操作1.ts中引入path模块出错&#xff1a;Cannot find module path or its corresponding type declarations.2.安装最新版本的pnpm:3.配置自动导入时&#xff0c;遇到.eslin…

web网页首页布局

效果展示&#xff1a; html代码&#xff1a; <!doctype html> <html> <head><meta charset"utf-8"><meta http-equiv"X-UA-Compatible" content"IEedge,chrome1"> <meta name"viewport" content&qu…

CSS3简单运用过渡元素(transition)

CSS3过渡 概念&#xff1a;在CSS3中&#xff0c;我们可以使用transition属性将元素的某一个属性从“一个属性值”在指定的时间内平滑地过渡到“另一个属性值”&#xff0c;从而实现动画效果。 CSS3变形&#xff08;transform)呈现的仅仅是一个结果&#xff0c;而CSS过渡&…

AdaM: An Adaptive Fine-Grained Scheme for Distributed Metadata Management——泛读论文

ICPP 2019 Paper 分布式元数据论文汇总 问题 为了同时解决元数据局部性和元数据服务器的负载均衡。 现有方法缺陷 基于哈希的方法&#xff1a;zFS [16]&#xff0c;CalvinFS [21]&#xff0c;DROP [24]&#xff0c;AngleCut [8] 静态子树划分&#xff1a;HDFS [6], NFS [14…

2024年【电工(初级)】最新解析及电工(初级)模拟考试

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 电工&#xff08;初级&#xff09;最新解析根据新电工&#xff08;初级&#xff09;考试大纲要求&#xff0c;安全生产模拟考试一点通将电工&#xff08;初级&#xff09;模拟考试试题进行汇编&#xff0c;组成一套电…

Java十大经典算法——贪心算法

算法概念&#xff1a; 贪婪算法(贪心算法)是指在对问题进行求解时&#xff0c;在每一步选择中都采取最好或者最优(即最有利)的选择&#xff0c;从而希望能够导致结果是最好或者最优的算法&#xff1b;贪婪算法所得到的结果不一定是最优的结果(有时候会是最优解)&#xff0c;但…

世微AP5125 输入14-80V 输出12V5A LED灯降压恒流电源驱动方案 SOT23-6

这是一款60WLED驱动方案,线路图BOM表如下 ​ 祥单表&#xff1a; 实物图&#xff1a; 产品描述 AP5125 是一款外围电路简单的 Buck 型平均电流检测模式的 LED 恒流驱动器&#xff0c;适用于 8-100V 电压范围的非隔离式大功率恒流 LED 驱动领域。芯片采用固定频率 140kHz 的 …

Springboot3+EasyExcel由浅入深

环境介绍 技术栈 springboot3easyexcel 软件 版本 IDEA IntelliJ IDEA 2022.2.1 JDK 17 Spring Boot 3 EasyExcel是一个基于Java的、快速、简洁、解决大文件内存溢出的Excel处理工具。 他能让你在不用考虑性能、内存的等因素的情况下&#xff0c;快速完成Excel的读、…

Mr_HJ / form-generator项目文档学习与记录(续2)

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码&#xff1a; https://gitee.com/nbacheng/ruoyi-nbcio 演示地址&#xff1a;RuoYi-Nbcio后台管理系统 更多nbcio-boot功能请看演示系统 gitee源代码地址 后端代码&#xff1a; https://gitee.com/nbacheng/n…

vue3打包后页面空白解决方法

vue3打包后页面空白解决方法 问题解决方法 问题 最近写一个小项目 没有打包的时候一切正常 技术栈用的vue3 vite 我用的是npm创建的项目 npm init vuelatest问题一 &#xff1a;打包后页面空白&#xff0c;什么都没有 问题二&#xff1a;刷新页面后找不到资源 把url的inde…

(超详细)5-YOLOV5改进-添加A2Attention注意力机制

1、在yolov5/models下面新建一个A2Attention.py文件&#xff0c;在里面放入下面的代码 代码如下&#xff1a; import numpy as np import torch from torch import nn from torch.nn import init from torch.nn import functional as Fclass DoubleAttention(nn.Module):def …

自研OS,手机厂商的「私心」与软件厂商的「灾难」

作者 | 辰纹 来源 | 洞见新研社 在卷完了配置参数&#xff0c;影像跑分&#xff0c;屏幕快充、存储影像、续航折叠……手机还能怎么卷&#xff1f; 过去的2023年&#xff0c;手机厂商们不约而同的将目标瞄准了自研系统。 站在民族情感层面&#xff0c;中国手机“去安卓化”…

PHP在线考试平台管理系统源码带文字搭建教程和操作手册

PHP在线考试平台管理系统源码带文字搭建教程和操作手册 技术架构 PHP7.2 Thinkphp6 React UmiJs nginx mysql5.7 cnetos7以上 宝塔面板 系统功能特性与介绍 采用PHP7强类型&#xff08;严格模式&#xff09;。 题库管理 支持多种试题类型和录题方式。 考生管理 快速导入考…

Paddle模型转ONNX

深度学习模型在硬件加速器上的部署常常要用到ONNX&#xff08;Open Neural Network Exchange&#xff0c;开放神经网络交换&#xff09;格式&#xff0c;也可以通过ONNX实现不同AI框架&#xff08;如Pytorch、TensorFlow、Caffe2、PaddlePaddle等&#xff09;之间的模型转换。 …

python:for循环 实现FizzBuzz

python&#xff1a;for循环 实现FizzBuzz 要求&#xff1a;输入一个数字&#xff0c;程序遍历从1到输入的数字之间的所有数字&#xff0c;如果该数能被3整除&#xff0c;打印Fizz&#xff1b;如果该数能被5整除&#xff0c;打印Buzz&#xff1b;如果能同时被3和5整除&#xff…

Docker安装Redis 配置文件映射以及密码设置

安装直接docker pull redis即可&#xff0c;默认redis最新版 设置两个配置文件路径 mkdir -p /root/docker/redis/data mkdir -p /root/docker/redis/conf touch redis.conf // 容器挂载用conf配置文件 bind 0.0.0.0 protected-mode yes port 6379 tcp-backlog 511 timeout…

蓝桥杯单片机组备赛——LED指示灯的基本控制

&#x1f388;教程介绍&#xff1a;博客依据b站小蜜蜂老师的教程进行编写&#xff0c;文中会对老师传授的知识进行总结并加入自己的一些理解。教程链接 文章目录 一、点灯介绍二、相关数字芯片介绍2.1 74HC138介绍2.2 74HC573介绍2.3 74HC02介绍 三、代码设计思路四、代码编写…