小巧且兼具高性能的小模型 TinyLlama 等

TinyLlama-1.1B

小模型在边缘设备上有着广泛的应用,如智能手机、物联网设备和嵌入式系统,这些边缘设备通常具有有限的计算能力和存储空间,它们无法有效地运行大型语言模型。因此,深入探究小型模型显得尤为重要。

来自新加坡科技设计大学(SUTD)的研究者近日推出了 TinyLlama,该语言模型的参数量为 11 亿,在大约 3 万亿个 token 上预训练而成。

图片

  • 论文地址:https://arxiv.org/pdf/2401.02385.pdf

  • 项目地址:https://github.com/jzhang38/TinyLlama/blob/main/README_zh-CN.md

TinyLlama 以 Llama 2 架构和分词器(tokenizer)为基础,这意味着 TinyLlama 可以在许多基于 Llama 的开源项目中即插即用。此外,TinyLlama 只有 11 亿的参数,体积小巧,适用于需要限制计算和内存占用的多种应用。

该研究表示仅需 16 块 A100-40G 的 GPU,便可在 90 天内完成 TinyLlama 的训练。

图片

该项目从上线开始,持续受到关注,目前星标量达到 4.7K。

图片

TinyLlama 模型架构详细信息如下所示:

图片

训练细节如下:

图片

研究者表示,这项研究旨在挖掘使用较大数据集训练较小模型的潜力。他们重点探究在用远大于扩展定律(scaling law)建议的 token 数量进行训练时,较小模型的行为表现。

具体来说,该研究使用大约 3 万亿个 token 训练具有 1.1B 个参数的 Transformer (仅解码器)模型。据了解,这是第一次尝试使用如此大量的数据来训练具有 1B 参数的模型。

尽管规模相对较小,但 TinyLlama 在一系列下游任务中表现相当出色,它的性能显著优于同等大小的现有开源语言模型。具体来说,TinyLlama 在各种下游任务中都超越了 OPT-1.3B 和 Pythia1.4B 。

此外,TinyLlama 还用到了各种优化方法,如 flash attention 2、FSDP( Fully Sharded Data Parallel )、 xFormers 等。

在这些技术的加持下,TinyLlama 训练吞吐量达到了每 A100-40G GPU 每秒 24000 个 token。例如,TinyLlama-1.1B 模型对于 300B token 仅需要 3,456 A100 GPU 小时,而 Pythia 为 4,830 小时,MPT 为 7,920 小时。这显示了该研究优化的有效性以及在大规模模型训练中节省大量时间和资源的潜力。

TinyLlama 实现了 24k tokens / 秒 / A100 的训练速度,这个速度好比用户可以在 8 个 A100 上用 32 小时训练一个具有 11 亿参数、220 亿 token 的 chinchilla-optimial 的模型。同时,这些优化也大大减少了显存占用,用户可以把 11 亿参数的模型塞入 40GB 的 GPU 里面还能同时维持 16k tokens 的 per-gpu batch size。只需要把 batch size 改小一点, 你就可以在 RTX 3090/4090 上面训练 TinyLlama。 

图片

图片

实验中,该研究主要关注具有纯解码器架构的语言模型,包含大约 10 亿个参数。具体来说,该研究将 TinyLlama 与 OPT-1.3B、Pythia-1.0B 和 Pythia-1.4B 进行了比较。

TinyLlama 在常识推理任务上的性能如下所示,可以看出 TinyLlama 在许多任务上都优于基线,并获得了最高的平均分数。

图片

此外,研究者在预训练期间跟踪了 TinyLlama 在常识推理基准上的准确率,如图 2 所示,TinyLlama 的性能随着计算资源的增加而提高,在大多数基准中超过了 Pythia-1.4B 的准确率。

图片

表 3 表明,与现有模型相比,TinyLlama 表现出了更好的问题解决能力。

图片

手快的网友已经开始整活了:运行效果出奇得好,在 GTX3060 上运行,能以 136 tok / 秒的速度运行。

图片

「确实是快!」

图片

小模型 LiteLlama

由于 TinyLlama 的发布,SLM(小型语言模型)开始引起广泛关注。德克萨斯工农大学的 Xiaotian Han 发布了 SLM-LiteLlama。它有 460M 参数,由 1T token 进行训练。这是对 Meta AI 的 LLaMa 2 的开源复刻版本,但模型规模显著缩小。

图片

项目地址:https://huggingface.co/ahxt/LiteLlama-460M-1T

LiteLlama-460M-1T 在 RedPajama 数据集上进行训练,并使用 GPT2Tokenizer 对文本进行 token 化。作者在 MMLU 任务上对该模型进行评估,结果如下图所示,在参数量大幅减少的情况下,LiteLlama-460M-1T 仍能取得与其他模型相媲美或更好的成绩。

图片

以下为该模型的性能表现,更详细内容请参阅:

https://huggingface.co/datasets/open-llm-leaderboard/details_ahxt__llama2_xs_460M_experimental

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/306123.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【C语言】操作符

操作符分类 算术操作符移位操作符位操作符赋值操作符单目操作符关系操作符逻辑操作符条件操作符逗号操作符下标引用、函数调用和结构成员操作符 算术操作符 除了 % 操作符之外,其他的几个操作符可以作用于整数和浮点数。 对于 / 操作符如果两个操作数都为整数&am…

AMEYA360 | 热敏电阻的工作原理及作用 热敏电阻厂商有哪些

摘要:热敏电阻是一种传感器电阻,其电阻值随着温度的变化而改变。热敏电阻的工作原理是使用传感器来帮助调节温度高低,作用包括电压调节,音量控制,时间延迟和电路保护。热敏电阻具有测温、温度补偿、过热保护、液面测量…

基于springboot+vue的家政服务系统(前后端分离)

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容:毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目背景…

jmeter连接数据库

1.准备工作 连接数据库需要第三方包 mysql-connector-java-5.1.35-bin 放入路径下:"C:apache-jmeter-5.0\lib\ext\mysql-connector-java-5.1.35-bin.jar" 2.重启jmeter 3.运用场景:可以用于造数据,恢复数据,方便案例…

Java设计模式详解超详细(含示例代码)

1. 什么是设计模式 设计模式,是一套被反复使用、多数人知晓的、经过分类编目的、代码设计经验的总结。使用设计模式是为了可重用代码、让代码更容易被他人理解、保证代码可靠性、程序的重用性。 2. 设计模式分类 创建型模式,共五种:工厂方法…

Java后端开发——Mybatis实验

文章目录 Java后端开发——Mybatis实验一、MyBatis入门程序1.创建工程2.引入相关依赖3.数据库准备4.编写数据库连接信息配置文件5.创建POJO实体6.编写核心配置文件和映射文件 二、MyBatis案例:员工管理系统1.在mybatis数据库中创建employee表2.创建持久化类Employee…

使用pyinstaller打包生成exe(解决gradio程序的打包问题)

解决 [Errno 2] No such file or directory: gradio_client\types.json 问题,不需要手动创建hook文件 解决 FileNotFoundError: [Errno 2] No such file or directory: gradio\blocks_events.pyc 问题,不需要将pyi文件重命名为pyc文件 最终实现gradio程…

基于uniapp封装的table组件

数据格式 tableData: [{elcInfo: [{tableData:[1,293021.1,293021.1,293021.1,293021.1,]}]},{elcInfo: [{tableData:[1,293021.1,293021.1,293021.1,293021.1,]}]},{elcInfo: [{tableData:[1,293021.1,293021.1,293021.1,293021.1,]}]},/* {title: "2",elcInfo: [{…

强化学习求解TSP:Qlearning求解旅行商问题(Traveling salesman problem, TSP)提供Python代码

一、Qlearning简介 Q-learning是一种强化学习算法,用于解决基于奖励的决策问题。它是一种无模型的学习方法,通过与环境的交互来学习最优策略。Q-learning的核心思想是通过学习一个Q值函数来指导决策,该函数表示在给定状态下采取某个动作所获…

MySql 1170-BLOB/TEXT 错误

MySql 1170-BLOB/TEXT column idused in key specification without a key length 原因:由于将主键id设置为 text类型,所以导致主键 的长度,没有设置。 解决方案:方案1:将主键id设置为varchar 类型的,设置对应的长度…

new mars3d.graphic.ModelEntity({clampToGround:true,模型不贴地处理办法

问题&#xff1a; 1.new mars3d.graphic.ModelEntity({clampToGround:true,时&#xff0c;发现模型不贴地 2.推断原因是模型可能建模的时候&#xff0c;坐标原点数据不正确&#xff0c;无法贴地。 解决方案&#xff1a; <一>.在Mars3d的模型编辑调整页面&#xff0c;进…

【习题】应用程序框架

判断题 1. 一个应用只能有一个UIAbility。错误(False) 正确(True)错误(False) 2. 创建的Empty Ability模板工程&#xff0c;初始会生成一个UIAbility文件。正确(True) 正确(True)错误(False) 3. 每调用一次router.pushUrl()方法&#xff0c;页面路由栈数量均会加1。错误(Fal…

盖子的c++小课堂——第二十三讲:背包问题

前言 又是一次漫长的更新&#xff08;我真不是故意的aaaaaaaaaaaaaaa&#xff09;&#xff0c;先不多说了&#xff0c;直接给我~坐下~说错了说错了&#xff0c;直接开始~ 背包问题----动态规划 背包问题&#xff08;knapsack problem&#xff09; 动态规划&#xff08;dyna…

【Redis】非关系型数据库之Redis的主从复制、哨兵和集群高可用

目录 一、主从复制、哨兵、集群的区别 二、主从复制 2.1主从复制的作用 2.2主从复制的原理 2.3主从复制的实操 步骤一&#xff1a;环境准备 步骤二&#xff1a;安装Redis以及配置文件修改 Redis的主从配置文件都一样 步骤四&#xff1a;验证主从复制 三、哨兵 3.1哨兵…

numpy100练习题,包含相应使用函数解释

取自github开源项目&#xff1a;numpy100题 文章目录 1. 导入numpy库并简写为 np (★☆☆)2. 打印numpy的版本和配置说明 (★☆☆)3. 创建一个长度为10的空向量 (★☆☆)4. 如何找到任何一个数组的内存大小&#xff1f; (★☆☆)5. 如何从命令行得到numpy中add函数的说明文档?…

2024年1月9日学习总结

目录 学习目标学习内容联邦学习基础&#xff1a;why, what, howwhy&#xff1f;what&#xff1f;how&#xff1f; 联邦学习的例子——CIFAR-10数据集&#xff08;分类问题&#xff09;1、import libararies2、hyper-parameters3、加载并且划分数据4、创建神经网络模型5、helper…

Spark Core--加强

RDD的持久化 RDD缓存 当RDD被重复使用&#xff0c;或者计算该RDD比较容易出错&#xff0c;而且需要消耗比较多的资源和时间的时候&#xff0c;我们就可以将该RDD缓存起来。 主要作用: 提升Spark程序的计算效率 注意事项: RDD的缓存可以存储在内存或者是磁盘上&#xff0c;甚至…

RBAC权限管理概念

基于RBAC模型的权限设计&#xff1a;如何设计系统权限体系&#xff1f; | 人人都是产品经理 一&#xff0c;什么是RBAC RBAC(基于角色的权限控制)模型的核心是在用户和权限之间引入了角色的概念。取消了用户和权限的直接关联&#xff0c;改为通过用户关联角色、角色关联权限的…

虾皮如何查看自己的店铺

在虾皮&#xff08;Shopee&#xff09;平台上查看自己的店铺是非常重要的&#xff0c;因为它可以帮助您了解店铺的运营情况、管理商品和处理客户服务等。下面是在虾皮平台上查看店铺的步骤&#xff1a; 先给大家推荐一款shopee知虾数据运营工具知虾免费体验地址&#xff08;复制…

nn网络层-卷积层

一、1d/2d/3d Convolution 卷积运算&#xff1a;卷积核在输入信号&#xff08;图像&#xff09;上滑动&#xff0c;相应位置上进行乘加卷积核&#xff1a;又称为滤波器&#xff0c;过滤器&#xff0c;可认为是某种模式&#xff0c;某种特征。卷积过程类似于用一个模版去图像上…