【Redis】非关系型数据库之Redis的主从复制、哨兵和集群高可用

目录

一、主从复制、哨兵、集群的区别

二、主从复制

2.1主从复制的作用

2.2主从复制的原理

2.3主从复制的实操

步骤一:环境准备

步骤二:安装Redis以及配置文件修改

Redis的主从配置文件都一样

步骤四:验证主从复制

三、哨兵

3.1哨兵的原理和功能

3.2哨兵模式的作用

3.3哨兵的原理

3.4哨兵的实操

步骤一:完成主从复制(接着上面主从复制继续)

步骤二:完成哨兵节点的配置文件修改

步骤三:完成故障切换时,vip漂移脚本

步骤四:重新启动哨兵

步骤五:模拟故障切换,验证自动切换以及vip漂移 ​编辑

四、集群

4.1集群模式的特点

4.2集群模式的作用

4.3集群模式的数据分片

4.4集群模式的原理

4.5集群模式的实操

4.6集群模式的扩容


一、主从复制、哨兵、集群的区别

  • 主从复制:

主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复(手动恢复)

缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。

  • 哨兵:

在主从复制的基础上,哨兵实现了自动化的故障恢复。

缺陷:写操作无法负载均衡;存储能力受到单机的限制;哨兵无法对从节点进行自动故障转移,在读写分离场景下,从节点故障会导致读服务不可用,需要对从节点做额外的监控、切换操作(脚本)

  • 集群:

通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。

但是,成本比较高,通常至少三主三从,六台起步,成本比较高!!

二、主从复制

主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(Master),后者称为从节点(Slave);数据的复制是单向的,只能由主节点到从节点。

默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。

2.1主从复制的作用

  • 数据备份

主从复制实现了数据的热备份,是持久化之外的一种数据备份方式。

  • 故障恢复

当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。

  • 负载均衡

在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量

  • 高可用基础

除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础

2.2主从复制的原理

(1)若启动一个Slave机器进程,则它会向Master机器发送一个“sync command”命令,请求同步连接。
(2)无论是第一次连接还是重新连接,Master机器都会启动一个后台进程,将数据快照保存到数据文件中(执行rdb操作),同时Master还会记录修改数据的所有命令并缓存在数据文件中。
(3)后台进程完成缓存操作之后,Master机器就会向Slave机器发送数据文件,Slave端机器将数据文件保存到硬盘上,然后将其加载到内存中,接着Master机器就会将修改数据的所有操作一并发送给Slave端机器。若Slave出现故障导致宕机,则恢复正常后会自动重新连接。
(4)Master机器收到Slave端机器的连接后,将其完整的数据文件发送给Slave端机器,如果Master同时收到多个Slave发来的同步请求,则Master会在后台启动一个进程以保存数据文件,然后将其发送给所有的Slave端机器,确保所有的Slave端机器都正常。

1、从节点给主节点发送sync命令,主节点则通过bgsave命令生成RDB快照文件,然后将其文件传给从节点,之后的写操作都记录在缓冲区;
2、从节点收到快照文件后执行保存到数据集中,然后再次给主发送psync命令,获取缓冲区的数据;
3、主节点发送缓冲区的写操作,从节点执行同步到数据集中,此时完成主从数据一致;
4、后续从节点会持续监测主,主节点也会定时给从节点发送写操作,从节点同步执行,实现主从数据一致;

注意:从节点首次同步以及宕机恢复都需要执行一次全量数据加载,即全量备份

2.3主从复制的实操

步骤一:环境准备

//环境准备
systemctl stop firewalld
systemctl disable firewalld
setenforce 0
sed -i 's/enforcing/disabled/' /etc/selinux/config

#修改内核参数
vim /etc/sysctl.conf
vm.overcommit_memory = 1
net.core.somaxconn = 2048

sysctl -p

步骤二:安装Redis以及配置文件修改

//安装redis
yum install -y gcc gcc-c++ make

tar zxvf /opt/redis-7.0.13.tar.gz -C /opt/
cd /opt/redis-7.0.13
make
make PREFIX=/usr/local/redis install
#由于Redis源码包中直接提供了 Makefile 文件,所以在解压完软件包后,不用先执行 ./configure 进行配置,可直接执行 make 与 make install 命令进行安装。

#创建redis工作目录
mkdir /usr/local/redis/{conf,log,data}

cp /opt/redis-7.0.13/redis.conf /usr/local/redis/conf/

useradd -M -s /sbin/nologin redis
chown -R redis.redis /usr/local/redis/

#环境变量
vim /etc/profile 
PATH=$PATH:/usr/local/redis/bin		#增加一行

source /etc/profile


//定义systemd服务管理脚本
vim /usr/lib/systemd/system/redis-server.service
[Unit]
Description=Redis Server
After=network.target

[Service]
User=redis
Group=redis
Type=forking
TimeoutSec=0
PIDFile=/usr/local/redis/log/redis_6379.pid
ExecStart=/usr/local/redis/bin/redis-server /usr/local/redis/conf/redis.conf
ExecReload=/bin/kill -s HUP $MAINPID
ExecStop=/bin/kill -s QUIT $MAINPID
PrivateTmp=true

[Install]
WantedBy=multi-user.target

 

 

Redis的主从配置文件都一样

-----修改 Redis 配置文件(Slave节点操作)-----
vim /usr/local/redis/conf/redis.conf
bind 0.0.0.0									#87行,修改监听地址为0.0.0.0
protected-mode no								#111行,将本机访问保护模式设置no
port 6379										#138行,Redis默认的监听6379端口
daemonize yes									#309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6379.pid		#341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6379.log"	#354行,指定日志文件
dir /usr/local/redis/data						#504行,指定持久化文件所在目录
#requirepass abc123								#1037行,可选,设置redis密码
appendonly yes									#1380行,开启AOF
replicaof 192.168.80.10 6379					#528行,指定要同步的Master节点IP和端口
#masterauth abc123								#535行,可选,指定Master节点的密码,仅在Master节点设置了requirepass

步骤四:验证主从复制

方法一:通过日志来查看

方法二:在主上操作,验证读写分离与数据备份 

 

三、哨兵

3.1哨兵的原理和功能

主从切换技术的方法是:当服务器宕机后,需要手动一台从机切换为主机,这需要人工干预,不仅费时费力而且还会造成一段时间内服务不可用。为了解决主从复制的缺点,就有了哨兵机制。

哨兵的核心功能:在主从复制的基础上,哨兵引入了主节点的自动故障转移。

3.2哨兵模式的作用

  • 监控:哨兵会不断地检查主节点和从节点、还有哨兵节点是否运作正常。
  • 自动故障转移:当主节点不能正常工作时,哨兵会开始自动故障转移操作,它会将失效主节点的其中一个从节点升级为新的主节点,并让其它从节点改为复制新的主节点。
  • 通知(提醒):哨兵可以将故障转移的结果发送给客户端。

哨兵结构由两部分组成,哨兵节点和数据节点:
●哨兵节点:哨兵系统由一个或多个哨兵节点组成,
哨兵节点是特殊的redis节点,不存储数据。
●数据节点:主节点和从节点都是数据节点。

3.3哨兵的原理

#故障转移机制:
1.由哨兵节点定期监控发现主节点是否出现了故障
每个哨兵节点每隔1秒会向主节点、从节点及其它哨兵节点发送一次ping命令做一次心跳检测。如果主节点在一定时间范围内不回复或者是回复一个错误消息,那么这个哨兵就会认为这个主节点主观下线了(单方面的)。当超过半数哨兵节点认为该主节点主观下线了,这样就客观下线了。

2.当主节点出现故障,此时哨兵节点会通过Raft算法(选举算法)实现选举机制共同选举出一个哨兵节点为leader,来负责处理主节点的故障转移和通知。所以整个运行哨兵的集群的数量不得少于3个节点。

3.由leader哨兵节点执行故障转移,过程如下
●将某一个从节点升级为新的主节点,让其它从节点指向新的主节点,写vip会漂移到新的master;
●若原主节点恢复也变成从节点,并指向新的主节点;
●通知客户端主节点已经更换。

需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作。


#主节点的选举:
1.过滤掉不健康的(已下线的),没有回复哨兵 ping 响应的从节点。
2.选择配置文件中从节点优先级配置最高的。(replica-priority,默认值为100)
3.选择复制偏移量最大也就是复制最完整的从节点。


哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式

3.4哨兵的实操

步骤一:完成主从复制(接着上面主从复制继续)

步骤二:完成哨兵节点的配置文件修改

-----修改 Redis 哨兵模式的配置文件(所有节点操作)-----
cp /opt/redis-7.0.9/sentinel.conf /usr/local/redis/conf/
chown redis.redis /usr/local/redis/conf/sentinel.conf

vim /usr/local/redis/conf/sentinel.conf
protected-mode no									#6行,关闭保护模式
port 26379											#10行,Redis哨兵默认的监听端口
daemonize yes										#15行,指定sentinel为后台启动
pidfile /usr/local/redis/log/redis-sentinel.pid		#20行,指定 PID 文件
logfile "/usr/local/redis/log/sentinel.log"			#25行,指定日志存放路径
dir /usr/local/redis/data							#54行,指定数据库存放路径
sentinel monitor mymaster 192.168.80.10 6379 2		#73行,修改 指定该哨兵节点监控192.168.80.10:6379这个主节点,该主节点的名称是mymaster,最后的2的含义与主节点的故障判定有关:至少需要2个哨兵节点同意,才能判定主节点故障并进行故障转移
#sentinel auth-pass mymaster abc123					#76行,可选,指定Master节点的密码,仅在Master节点设置了requirepass
sentinel down-after-milliseconds mymaster 3000		#114行,判定服务器down掉的时间周期,默认30000毫秒(30秒)
sentinel failover-timeout mymaster 180000			#214行,同一个sentinel对同一个master两次failover之间的间隔时间(180秒)

 

步骤三:完成故障切换时,vip漂移脚本

脚本文件需要在所有数据节点上有

255 sentinel client-reconfig-script mymaster /usr/local/redis/conf/failover.sh

#!/bin/bash
newmaster=$6
oldmaster="$(ifconfig ens33|awk 'NR==2{print $2}')"
vip="192.168.20.100"

if [ $newmaster == $oldmaster ]
then
    ifconfig ens33:1 $vip
    exit 0
else
    ifconfig ens33:1 down
    exit 0
fi

exit 1

步骤四:重新启动哨兵

步骤五:模拟故障切换,验证自动切换以及vip漂移 

哨兵模式下两种查询主从的方式

[root@localhost ~]#redis-cli -a abc123 -p 26379 info sentinel

[root@localhost ~]#redis-cli -a abc123 -p 6379 info replication

哨兵日志查看

四、集群

4.1集群模式的特点

集群,即Redis Cluster,是Redis 3.0开始引入的分布式存储方案。

集群由多组节点(Node)组成,Redis的数据分布在这些节点中。集群中的节点分为主节点和从节点:只有主节点负责读写请求和集群信息的维护;从节点只进行主节点数据和状态信息的复制。

4.2集群模式的作用

(1)数据分区:数据分区(或称数据分片)是集群最核心的功能。
集群将数据分散到多个节点,一方面突破了Redis单机内存大小的限制,存储容量大大增加;另一方面每个主节点都可以对外提供读服务和写服务,大大提高了集群的响应能力。
Redis单机内存大小受限问题,在介绍持久化和主从复制时都有提及;例如,如果单机内存太大,bgsave和bgrewriteaof的fork操作可能导致主进程阻塞,主从环境下主机切换时可能导致从节点长时间无法提供服务,全量复制阶段主节点的复制缓冲区可能溢出。

(2)高可用:集群支持主从复制和主节点的自动故障转移(与哨兵类似);当任一节点发生故障时,集群仍然可以对外提供服务

4.3集群模式的数据分片

Redis集群引入了哈希槽的概念
Redis集群有16384个哈希槽(编号0-16383)
集群的每组节点负责一部分哈希槽
每个Key通过CRC16校验后对16384取余来决定放置哪个哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作

#以3个节点组成的集群为例:
节点A包含0到5460号哈希槽
节点B包含5461到10922号哈希槽
节点C包含10923到16383号哈希槽

#Redis集群的主从复制模型
集群中具有A、B、C三个节点,如果节点B失败了,整个集群就会因缺少5461-10922这个范围的槽而不可以用。
为每个节点添加一个从节点A1、B1、C1整个集群便有三个Master节点和三个slave节点组成,在节点B失败后,集群选举B1位为的主节点继续服务。当B和B1都失败后,集群将不可用。

4.4集群模式的原理

Redis集群的工作原理:
1、集群有多组节点,每组节点负责一部分哈希槽。
2、读写数据时,先针对key根据crc16的算法得出一个结果,然后把结果对 16384 取余。通过这个值去找到对应的哈希槽的节点,进行数据读写。
3、集群每组节点内做主从复制,当主节点宕机的时候,就会启用从节点。主节点负责读写请求和集群信息的维护;从节点负责主节点数据和状态信息的复制。

集群功能:
既可以实现高可用,又支持读写负载均衡,且可以横向扩容,更灵活。缺点成本高!

4.5集群模式的实操

redis的集群一般需要6个节点,3主3从。方便起见,这里所有节点在同一台服务器上模拟:
以端口号进行区分:3个主节点端口号:6001/6002/6003,对应的从节点端口号:6004/6005/6006。

cd /usr/local/redis/
mkdir -p redis-cluster/redis600{1..6}

for i in {1..6}
do
cp /opt/redis-7.0.9/redis.conf /usr/local/redis/redis-cluster/redis600$i
cp /opt/redis-7.0.9/src/redis-cli /opt/redis-7.0.9/src/redis-server /usr/local/redis/redis-cluster/redis600$i
done

#开启群集功能:
#其他5个文件夹的配置文件以此类推修改,注意6个端口都要不一样。
cd /usr/local/redis/redis-cluster/redis6001
vim redis.conf
#bind 127.0.0.1									#87行,注释掉bind项,默认监听所有网卡
protected-mode no								#111行,关闭保护模式
port 6001										#138行,修改redis监听端口
daemonize yes									#309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6001.pid		#341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6001.log"	#354行,指定日志文件
dir ./											#504行,指定持久化文件所在目录
appendonly yes									#1379行,开启AOF
cluster-enabled yes								#1576行,取消注释,开启群集功能
cluster-config-file nodes-6001.conf				#1584行,取消注释,群集名称文件设置
cluster-node-timeout 15000						#1590行,取消注释群集超时时间设置


#启动redis节点
分别进入那六个文件夹,执行命令:redis-server redis.conf ,来启动redis节点
cd /usr/local/redis/redis-cluster/redis6001
redis-server redis.conf

for d in {1..6}
do
cd /usr/local/redis/redis-cluster/redis600$d
./redis-server redis.conf
done

ps -ef | grep redis

#启动集群
redis-cli --cluster create 127.0.0.1:6001 127.0.0.1:6002 127.0.0.1:6003 127.0.0.1:6004 127.0.0.1:6005 127.0.0.1:6006 --cluster-replicas 1

 

 

 结果验证

4.6集群模式的扩容

已有集群为6个节点127.0.0.1:6001 - 127.0.0.1:6006,3组主从节点。现要增加第4组主从节点127.0.0.1:6007,127.0.0.1:6008

1.创建一个新的主节点127.0.0.1:6007。命令里需要指定一个已有节点以便于获取集群信息,本例是指定的127.0.0.1:6001
redis-cli -p 6001 --cluster add-node 127.0.0.1:6007 127.0.0.1:6001
或
redis-cli -p 6001
cluster meet 127.0.0.1 6007
cluster meet 127.0.0.1 6008

2.将127.0.0.1:6008创建为127.0.0.1:6007的从节点。命令里需要指定一个已有节点以便于获取集群信息和主节点的node ID
redis-cli -p 6001 --cluster add-node 127.0.0.1:6008 127.0.0.1:6001 --cluster-slave --cluster-master-id e44678abed249e22482559136bf45280fd3ac281
或
redis-cli -p 6008
cluster replicate e44678abed249e22482559136bf45280fd3ac281


3.新加入的主节点是没有槽数的,只有初始化集群的时候,才会根据主的数据分配好,如新增的主节点,需要手动分配
redis-cli -p 6007 --cluster reshard 127.0.0.1:6001 --cluster-from e1a033e07f0064e6400825b4ddbcd6680c032d10 --cluster-to e44678abed249e22482559136bf45280fd3ac281 --cluster-slots 1000 --cluster-yes
或
redis-cli -p 6007 --cluster reshard 127.0.0.1:6001
How many slots do you want to move (from 1 to 16384)? 1000                    #指定转移槽的数量
What is the receiving node ID? e44678abed249e22482559136bf45280fd3ac281       #指定接收槽数量的主节点node ID
Please enter all the source node IDs.
Type 'all' to use all the nodes as source nodes for the hash slots.
Type 'done' once you entered all the source nodes IDs.
Source node #1: e1a033e07f0064e6400825b4ddbcd6680c032d10           #指定分配的主节点node ID
Source node #2: done                                               #输入完毕,开始转移


4.查看集群状态
redis-cli -p 6001 cluster nodes

 

##查看集群信息
redis-cli -p 6007 cluster nodes  
redis-cli -p 6007 cluster slots  

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/306104.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

numpy100练习题,包含相应使用函数解释

取自github开源项目:numpy100题 文章目录 1. 导入numpy库并简写为 np (★☆☆)2. 打印numpy的版本和配置说明 (★☆☆)3. 创建一个长度为10的空向量 (★☆☆)4. 如何找到任何一个数组的内存大小? (★☆☆)5. 如何从命令行得到numpy中add函数的说明文档?…

2024年1月9日学习总结

目录 学习目标学习内容联邦学习基础:why, what, howwhy?what?how? 联邦学习的例子——CIFAR-10数据集(分类问题)1、import libararies2、hyper-parameters3、加载并且划分数据4、创建神经网络模型5、helper…

Spark Core--加强

RDD的持久化 RDD缓存 当RDD被重复使用,或者计算该RDD比较容易出错,而且需要消耗比较多的资源和时间的时候,我们就可以将该RDD缓存起来。 主要作用: 提升Spark程序的计算效率 注意事项: RDD的缓存可以存储在内存或者是磁盘上,甚至…

RBAC权限管理概念

基于RBAC模型的权限设计:如何设计系统权限体系? | 人人都是产品经理 一,什么是RBAC RBAC(基于角色的权限控制)模型的核心是在用户和权限之间引入了角色的概念。取消了用户和权限的直接关联,改为通过用户关联角色、角色关联权限的…

虾皮如何查看自己的店铺

在虾皮(Shopee)平台上查看自己的店铺是非常重要的,因为它可以帮助您了解店铺的运营情况、管理商品和处理客户服务等。下面是在虾皮平台上查看店铺的步骤: 先给大家推荐一款shopee知虾数据运营工具知虾免费体验地址(复制…

nn网络层-卷积层

一、1d/2d/3d Convolution 卷积运算:卷积核在输入信号(图像)上滑动,相应位置上进行乘加卷积核:又称为滤波器,过滤器,可认为是某种模式,某种特征。卷积过程类似于用一个模版去图像上…

【JAVA】怎么确保一个集合不能被修改

🍎个人博客:个人主页 🏆个人专栏: JAVA ⛳️ 功不唐捐,玉汝于成 目录 前言 正文 示例: 不可修改的List: 不可修改的Set: 不可修改的Map: 结语 我的其他博…

强化学习在生成式预训练语言模型中的研究现状简单调研

1. 绪论 本文旨在深入探讨强化学习在生成式预训练语言模型中的应用,特别是在对齐优化、提示词优化和经验记忆增强提示词等方面的具体实践。通过对现有研究的综述,我们将揭示强化学习在提高生成式语言模型性能和人类对话交互的关键作用。虽然这些应用展示…

STM32F103C8T6内部自带Bootloader模式之使用FlyMcu烧写程序

简介 实现自己的Bootloader前, 使用一下STM32内部自带的Bootloader对STM进行烧写 步骤 下载FlyMCU 参考 普中STM32-PZ6806L 使用FlyMcu串口烧录程序 Boot选择 Boot0->1 , Boot1->0 进到系统存储器 打开FlyMCU 1 选择串口波特率 2 选择程序 3 不需要使用辅助引脚 4 开…

Linux网络配置与抓包工具介绍

目录 一、配置命令 1. ifconfig 1.1 概述信息解析 1.2 常用格式 2. ip 2.1 ip link 数据链路层 2.2 ip addr 网络层 2.3 路由 3. hostname 3.1 临时修改主机名 3.2 永久修改主机名 4. route 5. netstat 6. ss 7. ping 8. traceroute 9. nslookup 10. 永久修…

书生·浦语大模型全链路开源体系 学习笔记 第三课

huggingface-cli: command not found 按照该文档解决即可 https://github.com/huggingface/huggingface_hub/issues/1079 具体如下: 1、确保环境已将安装huggingface-cli 2、版本需要旧版,pip install huggingface_hub0.20.1 3、再按如下执行 # T…

WCF几种寄宿方式IIS、Winform、控制台、Windows服务

WCF寄宿方式是一种非常灵活的操作,可以在IIS服务、Windows服务、Winform程序、控制台程序中进行寄宿,从而实现WCF服务的运行,为调用者方便、高效提供服务调用。本文分别对这几种方式进行详细介绍并开发例子进行说明,以求大家对WCF寄宿的方式进行全面的认识和了解。 1、 WC…

计算机毕业设计 基于SpringBoot的项目申报系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍:✌从事软件开发10年之余,专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ 🍅文末获取源码联系🍅 👇🏻 精…

探索雷盛537威士忌的魅力:从观色、闻香到品鉴

威士忌,这一源于苏格兰的特别烈酒,以其丰富的味蕾和特别的魅力征服了全球的品鉴者。品鉴威士忌不仅仅是一种感官体验,更是一种探索和发现的旅程。在本文中,我们将以雷盛537威士忌为例,与您深入了解品鉴威士忌的全过程&…

React-Hoc高阶组件与css-in-js技术

Hoc高阶组件 Higher - Order Components:在原有组件基础之上加工后新生成得到的新组件。【高阶组件】 const NewComponent HOC(YourComponent) 通俗的来讲,高阶组件就相当于手机壳,通过包装组件,增强组件功能。 HOC实现步骤&…

三分钟轻松搞懂 HashMap 死循环问题!

三分钟轻松搞懂 HashMap 死循环问题! HashMap 死循环发生在 JDK 1.7 版本中,形成死循环的原因是 HashMap 在 JDK 1.7 使用的是头插法,头插法 链表 多线程并发 HashMap 扩容,这几个点加在一起就形成了 HashMap 的死循环。 前置…

Adding Conditional Control to Text-to-Image Diffusion Models——【代码复现】

官方实现代码地址:lllyasviel/ControlNet: Let us control diffusion models! (github.com) 一、前言 此项目的使用需要显存大于8G,训练自己的ControlNet或需要更大,因此请注意查看自身硬件是否符合。 在此之前请确保已经安装好python以及…

【UE Niagara学习笔记】05 - 喷射火焰顶部的蓝色火焰

在上一篇博客(【UE Niagara学习笔记】04 - 火焰喷射时的黑烟效果)的基础上继续实现在火焰喷射的起点位置生成蓝色火焰的效果。 目录 效果 步骤 1. 创建新的发射器 2. 减少粒子生成数量 3. 减小粒子初始大小 4. 减少粒子喷射距离 5. 减少粒子初始…

在Linux上搭建Maven仓库

目录 一、下载安装包二、安装maven三、修改配置文件settings.xml四、配置环境变量五、测试maven是否可用 一、下载安装包 我在这里为大家准备好了apache-maven-3.5.0-bin.tar.gz,百度网盘下载链接如下: 链接:https://pan.baidu.com/s/1bGun…

python编程使用selenium模拟登陆淘宝实例代码

selenium简介 selenium 是一个web的自动化测试工具,不少学习功能自动化的同学开始首选selenium ,相因为它相比QTP有诸多有点: * 免费,也不用再为破解QTP而大伤脑筋* 小巧,对于不同的语言它只是一个包而已&#xff0c…