60.Sentinel源码分析

Sentinel源码分析

1.Sentinel的基本概念

Sentinel实现限流、隔离、降级、熔断等功能,本质要做的就是两件事情:

  • 统计数据:统计某个资源的访问数据(QPS、RT等信息)

  • 规则判断:判断限流规则、隔离规则、降级规则、熔断规则是否满足

这里的资源就是希望被Sentinel保护的业务,例如项目中定义的controller方法就是默认被Sentinel保护的资源。

1.1.ProcessorSlotChain

实现上述功能的核心骨架是一个叫做ProcessorSlotChain的类。这个类基于责任链模式来设计,将不同的功能(限流、降级、系统保护)封装为一个个的Slot,请求进入后逐个执行即可。

其工作流如图:

责任链中的Slot也分为两大类:

  • 统计数据构建部分(statistic)

    • NodeSelectorSlot:负责构建簇点链路中的节点(DefaultNode),将这些节点形成链路树

    • ClusterBuilderSlot:负责构建某个资源的ClusterNode,ClusterNode可以保存资源的运行信息(响应时间、QPS、block 数目、线程数、异常数等)以及来源信息(origin名称)

    • StatisticSlot:负责统计实时调用数据,包括运行信息、来源信息等

  • 规则判断部分(rule checking)

    • AuthoritySlot:负责授权规则(来源控制)

    • SystemSlot:负责系统保护规则

    • ParamFlowSlot:负责热点参数限流规则

    • FlowSlot:负责限流规则

    • DegradeSlot:负责降级规则

1.2.Node

Sentinel中的簇点链路是由一个个的Node组成的,Node是一个接口,包括下面的实现:

controller里面的每一个方法都是不同的入口节点方法,比如两个controller方法调用service中的同一个方法,那么service的该资源方法就会创建两个不同的defaultNode节点。

可以认为DefaultNode类型是链路模式使用的,而ClusterNode类型则是非链路模式使用。

所有的节点都可以记录对资源的访问统计数据,所以都是StatisticNode的子类。

按照作用分为两类Node:

  • DefaultNode:代表链路树中的每一个资源,一个资源出现在不同链路中时,会创建不同的DefaultNode节点。而树的入口节点叫EntranceNode,是一种特殊的DefaultNode

  • ClusterNode:代表资源,一个资源不管出现在多少链路中,只会有一个ClusterNode。记录的是当前资源被访问的所有统计数据之和。

DefaultNode记录的是资源在当前链路中的访问数据,用来实现基于链路模式的限流规则。ClusterNode记录的是资源在所有链路中的访问数据,实现默认模式、关联模式的限流规则。

例如:我们在一个SpringMVC项目中,有两个业务:

  • 业务1:controller中的资源/order/query访问了service中的资源/goods

  • 业务2:controller中的资源/order/save访问了service中的资源/goods

创建的链路图如下:

1.3.Entry

默认情况下,Sentinel会将controller中的方法作为被保护资源,那么问题来了,我们该如何将自己的一段代码标记为一个Sentinel的资源呢?

Sentinel中的资源用Entry来表示。声明Entry的API示例:

// 资源名可使用任意有业务语义的字符串,比如方法名、接口名或其它可唯一标识的字符串。
try (Entry entry = SphU.entry("resourceName")) {
  // 被保护的业务逻辑
  // do something here...
} catch (BlockException ex) {
  // 资源访问阻止,被限流或被降级
  // 在此处进行相应的处理操作
}

1.3.1.自定义资源

例如,我们在order-service服务中,将OrderServicequeryOrderById()方法标记为一个资源。

1)首先在order-service中引入sentinel依赖

<!--sentinel-->
<dependency>
    <groupId>com.alibaba.cloud</groupId>
    <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>

2)然后配置Sentinel地址

spring:
  cloud:
    sentinel:
      transport:
        dashboard: localhost:8089 # 这里我的sentinel用了8089的端口

3)修改OrderService类的queryOrderById方法

代码这样来实现:

public Order queryOrderById(Long orderId) {
    // 创建Entry,标记资源,资源名为resource1
    try (Entry entry = SphU.entry("resource1")) {
        // 1.查询订单,这里是假数据
        Order order = Order.build(101L, 4999L, "小米 MIX4", 1, 1L, null);
        // 2.查询用户,基于Feign的远程调用
        User user = userClient.findById(order.getUserId());
        // 3.设置
        order.setUser(user);
        // 4.返回
        return order;
    }catch (BlockException e){
        log.error("被限流或降级", e);
        return null;
    }
}

4)访问

打开浏览器,访问order服务:http://localhost:8080/order/101

然后打开sentinel控制台,查看簇点链路:

1.3.2.基于注解标记资源

在之前学习Sentinel的时候,我们知道可以通过给方法添加@SentinelResource注解的形式来标记资源。

这个是怎么实现的呢?

来看下我们引入的Sentinel依赖包:

其中的spring.factories声明需要就是自动装配的配置类,内容如下:

我们来看下SentinelAutoConfiguration这个类:

可以看到,在这里声明了一个Bean,SentinelResourceAspect

/**
 * Aspect for methods with {@link SentinelResource} annotation.
 *
 * @author Eric Zhao
 */
@Aspect
public class SentinelResourceAspect extends AbstractSentinelAspectSupport {
    // 切点是添加了 @SentinelResource注解的类
    @Pointcut("@annotation(com.alibaba.csp.sentinel.annotation.SentinelResource)")
    public void sentinelResourceAnnotationPointcut() {
    }
    
    // 环绕增强
    @Around("sentinelResourceAnnotationPointcut()")
    public Object invokeResourceWithSentinel(ProceedingJoinPoint pjp) throws Throwable {
        // 获取受保护的方法
        Method originMethod = resolveMethod(pjp);
        // 获取 @SentinelResource注解
        SentinelResource annotation = originMethod.getAnnotation(SentinelResource.class);
        if (annotation == null) {
            // Should not go through here.
            throw new IllegalStateException("Wrong state for SentinelResource annotation");
        }
        // 获取注解上的资源名称
        String resourceName = getResourceName(annotation.value(), originMethod);
        EntryType entryType = annotation.entryType();
        int resourceType = annotation.resourceType();
        Entry entry = null;
        try {
            // 创建资源 Entry
            entry = SphU.entry(resourceName, resourceType, entryType, pjp.getArgs());
            // 执行受保护的方法
            Object result = pjp.proceed();
            return result;
        } catch (BlockException ex) {
            return handleBlockException(pjp, annotation, ex);
        } catch (Throwable ex) {
            Class<? extends Throwable>[] exceptionsToIgnore = annotation.exceptionsToIgnore();
            // The ignore list will be checked first.
            if (exceptionsToIgnore.length > 0 && exceptionBelongsTo(ex, exceptionsToIgnore)) {
                throw ex;
            }
            if (exceptionBelongsTo(ex, annotation.exceptionsToTrace())) {
                traceException(ex);
                return handleFallback(pjp, annotation, ex);
            }
​
            // No fallback function can handle the exception, so throw it out.
            throw ex;
        } finally {
            if (entry != null) {
                entry.exit(1, pjp.getArgs());
            }
        }
    }
}
​

简单来说,@SentinelResource注解就是一个标记,而Sentinel基于AOP思想,对被标记的方法做环绕增强,完成资源(Entry)的创建。

1.4.Context

上一节,我们发现簇点链路中除了controller方法、service方法两个资源外,还多了一个默认的入口节点:

sentinel_spring_web_context,是一个EntranceNode类型的节点

这个节点是在初始化Context的时候由Sentinel帮我们创建的。

1.4.1.什么是Context

那么,什么是Context呢?

  • Context 代表调用链路上下文,贯穿一次调用链路中的所有资源( Entry),基于ThreadLocal。

  • Context 维持着入口节点(entranceNode)、本次调用链路的 curNode(当前资源节点)、调用来源(origin)等信息。

  • 后续的Slot都可以通过Context拿到DefaultNode或者ClusterNode,从而获取统计数据,完成规则判断

  • Context初始化的过程中,会创建EntranceNode,contextName就是EntranceNode的名称

对应的API如下:

// 创建context,包含两个参数:context名称、 来源名称
ContextUtil.enter("contextName", "originName");

1.4.2.Context的初始化

那么这个Context又是在何时完成初始化的呢?

1.4.2.1.自动装配

来看下我们引入的Sentinel依赖包:

其中的spring.factories声明需要就是自动装配的配置类,内容如下:

我们先看SentinelWebAutoConfiguration这个类:

这个类实现了WebMvcConfigurer,我们知道这个是SpringMVC自定义配置用到的类,可以配置HandlerInterceptor:

可以看到这里配置了一个SentinelWebInterceptor的拦截器。

SentinelWebInterceptor的声明如下:

发现它继承了AbstractSentinelInterceptor这个类。

HandlerInterceptor拦截器会拦截一切进入controller的方法,执行preHandle前置拦截方法,而Context的初始化就是在这里完成的。

1.4.2.2.AbstractSentinelInterceptor

HandlerInterceptor拦截器会拦截一切进入controller的方法,执行preHandle前置拦截方法,而Context的初始化就是在这里完成的。

我们来看看这个类的preHandle实现:

@Override
public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler)
    throws Exception {
    try {
        // 获取资源名称,一般是controller方法的@RequestMapping路径,例如/order/{orderId}
        String resourceName = getResourceName(request);
        if (StringUtil.isEmpty(resourceName)) {
            return true;
        }
        // 从request中获取请求来源,将来做 授权规则 判断时会用
        String origin = parseOrigin(request);
        
        // 获取 contextName,默认是sentinel_spring_web_context
        String contextName = getContextName(request);
        // 创建 Context
        ContextUtil.enter(contextName, origin);
        // 创建资源,名称就是当前请求的controller方法的映射路径
        Entry entry = SphU.entry(resourceName, ResourceTypeConstants.COMMON_WEB, EntryType.IN);
        request.setAttribute(baseWebMvcConfig.getRequestAttributeName(), entry);
        return true;
    } catch (BlockException e) {
        try {
            handleBlockException(request, response, e);
        } finally {
            ContextUtil.exit();
        }
        return false;
    }
}

1.4.2.3.ContextUtil

创建Context的方法就是ContextUtil.enter(contextName, origin);

我们进入该方法:

public static Context enter(String name, String origin) {
    if (Constants.CONTEXT_DEFAULT_NAME.equals(name)) {
        throw new ContextNameDefineException(
            "The " + Constants.CONTEXT_DEFAULT_NAME + " can't be permit to defined!");
    }
    return trueEnter(name, origin);
}

进入trueEnter方法:

protected static Context trueEnter(String name, String origin) {
    // 尝试获取context
    Context context = contextHolder.get();
    // 判空
    if (context == null) {
        // 如果为空,开始初始化
        Map<String, DefaultNode> localCacheNameMap = contextNameNodeMap;
        // 尝试获取入口节点
        DefaultNode node = localCacheNameMap.get(name);
        if (node == null) {
            LOCK.lock();
            try {
                node = contextNameNodeMap.get(name);
                if (node == null) {
                    // 入口节点为空,初始化入口节点 EntranceNode
                    node = new EntranceNode(new StringResourceWrapper(name, EntryType.IN), null);
                    // 添加入口节点到 ROOT
                    Constants.ROOT.addChild(node);
                    // 将入口节点放入缓存
                    Map<String, DefaultNode> newMap = new HashMap<>(contextNameNodeMap.size() + 1);
                    newMap.putAll(contextNameNodeMap);
                    newMap.put(name, node);
                    contextNameNodeMap = newMap;
                }
            } finally {
                LOCK.unlock();
            }
        }
        // 创建Context,参数为:入口节点 和 contextName
        context = new Context(node, name);
        // 设置请求来源 origin
        context.setOrigin(origin);
        // 放入ThreadLocal
        contextHolder.set(context);
    }
    // 返回
    return context;
}

执行逻辑如下图:

2.ProcessorSlotChain执行流程

接下来我们跟踪源码,验证下ProcessorSlotChain的执行流程。

2.1.入口

首先,回到一切的入口,AbstractSentinelInterceptor类的preHandle方法:

还有,SentinelResourceAspect的环绕增强方法:

可以看到,任何一个资源必定要执行SphU.entry()这个方法:

public static Entry entry(String name, int resourceType, EntryType trafficType, Object[] args)
    throws BlockException {
    return Env.sph.entryWithType(name, resourceType, trafficType, 1, args);
}
继续进入Env.sph.entryWithType(name, resourceType, trafficType, 1, args);:

@Override
public Entry entryWithType(String name, int resourceType, EntryType entryType, int count, boolean prioritized,
                           Object[] args) throws BlockException {
    // 将 资源名称等基本信息 封装为一个 StringResourceWrapper对象
    StringResourceWrapper resource = new StringResourceWrapper(name, entryType, resourceType);
    // 继续
    return entryWithPriority(resource, count, prioritized, args);
}

进入entryWithPriority方法:

private Entry entryWithPriority(ResourceWrapper resourceWrapper, int count, boolean prioritized, Object... args)
    throws BlockException {
    // 获取 Context
    Context context = ContextUtil.getContext();

    if (context == null) {
        // Using default context.
        context = InternalContextUtil.internalEnter(Constants.CONTEXT_DEFAULT_NAME);
    }
、	// 获取 Slot执行链,同一个资源,会创建一个执行链,放入缓存
    ProcessorSlot<Object> chain = lookProcessChain(resourceWrapper);

	// 创建 Entry,并将 resource、chain、context 记录在 Entry中
    Entry e = new CtEntry(resourceWrapper, chain, context);
    try {
        // 执行 slotChain
        chain.entry(context, resourceWrapper, null, count, prioritized, args);
    } catch (BlockException e1) {
        e.exit(count, args);
        throw e1;
    } catch (Throwable e1) {
        // This should not happen, unless there are errors existing in Sentinel internal.
        RecordLog.info("Sentinel unexpected exception", e1);
    }
    return e;
}

在这段代码中,会获取ProcessorSlotChain对象,然后基于chain.entry()开始执行slotChain中的每一个Slot. 而这里创建的是其实现类:DefaultProcessorSlotChain.

获取ProcessorSlotChain以后会保存到一个Map中,key是ResourceWrapper,值是ProcessorSlotChain.

所以,一个资源只会有一个ProcessorSlotChain.

2.2.DefaultProcessorSlotChain

我们进入DefaultProcessorSlotChain的entry方法:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, Object t, int count, boolean prioritized, Object... args)
    throws Throwable {
    // first,就是责任链中的第一个 slot
    first.transformEntry(context, resourceWrapper, t, count, prioritized, args);
}

这里的first,类型是AbstractLinkedProcessorSlot:

看下继承关系:

因此,first一定是这些实现类中的一个,按照最早讲的责任链顺序,first应该就是 NodeSelectorSlot

不过,既然是基于责任链模式,所以这里只要记住下一个slot就可以了,也就是next:

next确实是NodeSelectSlot类型。

而NodeSelectSlot的next一定是ClusterBuilderSlot,依次类推:

责任链就建立起来了。

2.3.NodeSelectorSlot

NodeSelectorSlot负责构建簇点链路中的节点(DefaultNode),将这些节点形成链路树。

核心代码:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, Object obj, int count, boolean prioritized, Object... args)
    throws Throwable {
  	// 尝试获取 当前资源的 DefaultNode
    DefaultNode node = map.get(context.getName());
    if (node == null) {
        synchronized (this) {
            node = map.get(context.getName());
            if (node == null) {
                // 如果为空,为当前资源创建一个新的 DefaultNode
                node = new DefaultNode(resourceWrapper, null);
                HashMap<String, DefaultNode> cacheMap = new HashMap<String, DefaultNode>(map.size());
                cacheMap.putAll(map);
                // 放入缓存中,注意这里的 key是contextName,
                // 这样不同链路进入相同资源,就会创建多个 DefaultNode
                cacheMap.put(context.getName(), node);
                map = cacheMap;
                // 当前节点加入上一节点的 child中,这样就构成了调用链路树
                ((DefaultNode) context.getLastNode()).addChild(node);
            }

        }
    }
	// context中的curNode(当前节点)设置为新的 node
    context.setCurNode(node);
    // 执行下一个 slot
    fireEntry(context, resourceWrapper, node, count, prioritized, args);
}

这个Slot完成了这么几件事情:

  • 为当前资源创建 DefaultNode

  • 将DefaultNode放入缓存中,key是contextName,这样不同链路入口的请求,将会创建多个DefaultNode,相同链路则只有一个DefaultNode

  • 将当前资源的DefaultNode设置为上一个资源的childNode

  • 将当前资源的DefaultNode设置为Context中的curNode(当前节点)

下一个slot,就是ClusterBuilderSlot

2.4.ClusterBuilderSlot

ClusterBuilderSlot负责构建某个资源的ClusterNode,核心代码:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node,
                  int count, boolean prioritized, Object... args)
    throws Throwable {
    // 判空,注意ClusterNode是共享的成员变量,也就是说一个资源只有一个ClusterNode,与链路无关
    if (clusterNode == null) {
        synchronized (lock) {
            if (clusterNode == null) {
                // 创建 cluster node.
                clusterNode = new ClusterNode(resourceWrapper.getName(), resourceWrapper.getResourceType());
                HashMap<ResourceWrapper, ClusterNode> newMap = new HashMap<>(Math.max(clusterNodeMap.size(), 16));
                newMap.putAll(clusterNodeMap);
                // 放入缓存,可以是nodeId,也就是resource名称
                newMap.put(node.getId(), clusterNode);
                clusterNodeMap = newMap;
            }
        }
    }
    // 将资源的 DefaultNode与 ClusterNode关联
    node.setClusterNode(clusterNode);
	// 记录请求来源 origin 将 origin放入 entry
    if (!"".equals(context.getOrigin())) {
        Node originNode = node.getClusterNode().getOrCreateOriginNode(context.getOrigin());
        context.getCurEntry().setOriginNode(originNode);
    }
	// 继续下一个slot
    fireEntry(context, resourceWrapper, node, count, prioritized, args);
}

2.5.StatisticSlot

StatisticSlot负责统计实时调用数据,包括运行信息(访问次数、线程数)、来源信息等。

StatisticSlot是实现限流的关键,其中基于滑动时间窗口算法维护了计数器,统计进入某个资源的请求次数。

核心代码:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, 
                  int count, boolean prioritized, Object... args) throws Throwable {
    try {
        // 放行到下一个 slot,做限流、降级等判断
        fireEntry(context, resourceWrapper, node, count, prioritized, args);

        // 请求通过了, 线程计数器 +1 ,用作线程隔离
        node.increaseThreadNum();
        // 请求计数器 +1 用作限流
        node.addPassRequest(count);

        if (context.getCurEntry().getOriginNode() != null) {
            // 如果有 origin,来源计数器也都要 +1
            context.getCurEntry().getOriginNode().increaseThreadNum();
            context.getCurEntry().getOriginNode().addPassRequest(count);
        }

        if (resourceWrapper.getEntryType() == EntryType.IN) {
            // 如果是入口资源,还要给全局计数器 +1.
            Constants.ENTRY_NODE.increaseThreadNum();
            Constants.ENTRY_NODE.addPassRequest(count);
        }

        // 请求通过后的回调.
        for (ProcessorSlotEntryCallback<DefaultNode> handler : StatisticSlotCallbackRegistry.getEntryCallbacks()) {
            handler.onPass(context, resourceWrapper, node, count, args);
        }
    } catch (Throwable e) {
        // 各种异常处理就省略了。。。
        context.getCurEntry().setError(e);

        throw e;
    }
}

另外,需要注意的是,所有的计数+1动作都包括两部分,以node.addPassRequest(count);为例:

@Override
public void addPassRequest(int count) {
    // DefaultNode的计数器,代表当前链路的 计数器
    super.addPassRequest(count);
    // ClusterNode计数器,代表当前资源的 总计数器
    this.clusterNode.addPassRequest(count);
}

具体计数方式,我们后续再看。

接下来,进入规则校验的相关slot了,依次是:

  • AuthoritySlot:负责授权规则(来源控制)

  • SystemSlot:负责系统保护规则

  • ParamFlowSlot:负责热点参数限流规则

  • FlowSlot:负责限流规则

  • DegradeSlot:负责降级规则

2.6.AuthoritySlot

负责请求来源origin的授权规则判断,如图:

核心API:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, int count, boolean prioritized, Object... args)
    throws Throwable {
    // 校验黑白名单
    checkBlackWhiteAuthority(resourceWrapper, context);
    // 进入下一个 slot
    fireEntry(context, resourceWrapper, node, count, prioritized, args);
}

黑白名单校验的逻辑:

void checkBlackWhiteAuthority(ResourceWrapper resource, Context context) throws AuthorityException {
    // 获取授权规则
    Map<String, Set<AuthorityRule>> authorityRules = AuthorityRuleManager.getAuthorityRules();

    if (authorityRules == null) {
        return;
    }

    Set<AuthorityRule> rules = authorityRules.get(resource.getName());
    if (rules == null) {
        return;
    }
	// 遍历规则并判断
    for (AuthorityRule rule : rules) {
        if (!AuthorityRuleChecker.passCheck(rule, context)) {
            // 规则不通过,直接抛出异常
            throw new AuthorityException(context.getOrigin(), rule);
        }
    }
}

再看下AuthorityRuleChecker.passCheck(rule, context)方法:

static boolean passCheck(AuthorityRule rule, Context context) {
    // 得到请求来源 origin
    String requester = context.getOrigin();

    // 来源为空,或者规则为空,都直接放行
    if (StringUtil.isEmpty(requester) || StringUtil.isEmpty(rule.getLimitApp())) {
        return true;
    }

    // rule.getLimitApp()得到的就是 白名单 或 黑名单 的字符串,这里先用 indexOf方法判断
    int pos = rule.getLimitApp().indexOf(requester);
    boolean contain = pos > -1;

    if (contain) {
        // 如果包含 origin,还要进一步做精确判断,把名单列表以","分割,逐个判断
        boolean exactlyMatch = false;
        String[] appArray = rule.getLimitApp().split(",");
        for (String app : appArray) {
            if (requester.equals(app)) {
                exactlyMatch = true;
                break;
            }
        }
        contain = exactlyMatch;
    }
	// 如果是黑名单,并且包含origin,则返回false
    int strategy = rule.getStrategy();
    if (strategy == RuleConstant.AUTHORITY_BLACK && contain) {
        return false;
    }
	// 如果是白名单,并且不包含origin,则返回false
    if (strategy == RuleConstant.AUTHORITY_WHITE && !contain) {
        return false;
    }
	// 其它情况返回true
    return true;
}

2.7.SystemSlot

SystemSlot是对系统保护的规则校验:

核心API:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, 
                  int count,boolean prioritized, Object... args) throws Throwable {
    // 系统规则校验
    SystemRuleManager.checkSystem(resourceWrapper);
    // 进入下一个 slot
    fireEntry(context, resourceWrapper, node, count, prioritized, args);
}

来看下SystemRuleManager.checkSystem(resourceWrapper);的代码:

public static void checkSystem(ResourceWrapper resourceWrapper) throws BlockException {
    if (resourceWrapper == null) {
        return;
    }
    // Ensure the checking switch is on.
    if (!checkSystemStatus.get()) {
        return;
    }

    // 只针对入口资源做校验,其它直接返回
    if (resourceWrapper.getEntryType() != EntryType.IN) {
        return;
    }

    // 全局 QPS校验
    double currentQps = Constants.ENTRY_NODE == null ? 0.0 : Constants.ENTRY_NODE.successQps();
    if (currentQps > qps) {
        throw new SystemBlockException(resourceWrapper.getName(), "qps");
    }

    // 全局 线程数 校验
    int currentThread = Constants.ENTRY_NODE == null ? 0 : Constants.ENTRY_NODE.curThreadNum();
    if (currentThread > maxThread) {
        throw new SystemBlockException(resourceWrapper.getName(), "thread");
    }
	// 全局平均 RT校验
    double rt = Constants.ENTRY_NODE == null ? 0 : Constants.ENTRY_NODE.avgRt();
    if (rt > maxRt) {
        throw new SystemBlockException(resourceWrapper.getName(), "rt");
    }

    // 全局 系统负载 校验
    if (highestSystemLoadIsSet && getCurrentSystemAvgLoad() > highestSystemLoad) {
        if (!checkBbr(currentThread)) {
            throw new SystemBlockException(resourceWrapper.getName(), "load");
        }
    }

    // 全局 CPU使用率 校验
    if (highestCpuUsageIsSet && getCurrentCpuUsage() > highestCpuUsage) {
        throw new SystemBlockException(resourceWrapper.getName(), "cpu");
    }
}

2.8.ParamFlowSlot

ParamFlowSlot就是热点参数限流,如图:

是针对进入资源的请求,针对不同的请求参数值分别统计QPS的限流方式。

  • 这里的单机阈值,就是最大令牌数量:maxCount

  • 这里的统计窗口时长,就是统计时长:duration

含义是每隔duration时间长度内,最多生产maxCount个令牌,上图配置的含义是每1秒钟生产2个令牌。

核心API:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node,
                  int count, boolean prioritized, Object... args) throws Throwable {
    // 如果没有设置热点规则,直接放行
    if (!ParamFlowRuleManager.hasRules(resourceWrapper.getName())) {
        fireEntry(context, resourceWrapper, node, count, prioritized, args);
        return;
    }
	// 热点规则判断
    checkFlow(resourceWrapper, count, args);
    // 进入下一个 slot
    fireEntry(context, resourceWrapper, node, count, prioritized, args);
}

2.8.1.令牌桶

热点规则判断采用了令牌桶算法来实现参数限流,为每一个不同参数值设置令牌桶,Sentinel的令牌桶有两部分组成:

这两个Map的key都是请求的参数值,value却不同,其中:

  • tokenCounters:用来记录剩余令牌数量

  • timeCounters:用来记录上一个请求的时间

当一个携带参数的请求到来后,基本判断流程是这样的:

2.9.FlowSlot

FlowSlot是负责限流规则的判断,如图:

包括:

  • 三种流控模式:直接模式、关联模式、链路模式

  • 三种流控效果:快速失败、warm up、排队等待

三种流控模式,从底层数据统计角度,分为两类:

  • 对进入资源的所有请求(ClusterNode)做限流统计:直接模式、关联模式

  • 对进入资源的部分链路(DefaultNode)做限流统计:链路模式

三种流控效果,从限流算法来看,分为两类:

  • 滑动时间窗口算法:快速失败、warm up

  • 漏桶算法:排队等待效果

2.9.1.核心流程

核心API如下:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, int count,
                  boolean prioritized, Object... args) throws Throwable {
    // 限流规则检测
    checkFlow(resourceWrapper, context, node, count, prioritized);
	// 放行
    fireEntry(context, resourceWrapper, node, count, prioritized, args);
}
checkFlow方法:

void checkFlow(ResourceWrapper resource, Context context, DefaultNode node, int count, boolean prioritized)
    throws BlockException {
    // checker是 FlowRuleChecker 类的一个对象
    checker.checkFlow(ruleProvider, resource, context, node, count, prioritized);
}

跟入FlowRuleChecker:

public void checkFlow(Function<String, Collection<FlowRule>> ruleProvider, 
                      ResourceWrapper resource,Context context, DefaultNode node,
                      int count, boolean prioritized) throws BlockException {
        if (ruleProvider == null || resource == null) {
            return;
        }
        // 获取当前资源的所有限流规则
        Collection<FlowRule> rules = ruleProvider.apply(resource.getName());
        if (rules != null) {
            for (FlowRule rule : rules) {
                // 遍历,逐个规则做校验
                if (!canPassCheck(rule, context, node, count, prioritized)) {
                    throw new FlowException(rule.getLimitApp(), rule);
                }
            }
        }
    }

这里的FlowRule就是限流规则接口,其中的几个成员变量,刚好对应表单参数:

public class FlowRule extends AbstractRule {
    /**
     * 阈值类型 (0: 线程, 1: QPS).
     */
    private int grade = RuleConstant.FLOW_GRADE_QPS;
    /**
     * 阈值.
     */
    private double count;
    /**
     * 三种限流模式.
     *
     * {@link RuleConstant#STRATEGY_DIRECT} 直连模式;
     * {@link RuleConstant#STRATEGY_RELATE} 关联模式;
     * {@link RuleConstant#STRATEGY_CHAIN} 链路模式.
     */
    private int strategy = RuleConstant.STRATEGY_DIRECT;
    /**
     * 关联模式关联的资源名称.
     */
    private String refResource;
    /**
     * 3种流控效果.
     * 0. 快速失败, 1. warm up, 2. 排队等待, 3. warm up + 排队等待
     */
    private int controlBehavior = RuleConstant.CONTROL_BEHAVIOR_DEFAULT;
	// 预热时长
    private int warmUpPeriodSec = 10;
    /**
     * 队列最大等待时间.
     */
    private int maxQueueingTimeMs = 500;
    // 。。。 略
}

校验的逻辑定义在FlowRuleCheckercanPassCheck方法中:

public boolean canPassCheck(/*@NonNull*/ FlowRule rule, Context context, DefaultNode node, int acquireCount,
                            boolean prioritized) {
    // 获取限流资源名称
    String limitApp = rule.getLimitApp();
    if (limitApp == null) {
        return true;
    }
	// 校验规则
    return passLocalCheck(rule, context, node, acquireCount, prioritized);
}

进入passLocalCheck()

private static boolean passLocalCheck(FlowRule rule, Context context, DefaultNode node,
                                      int acquireCount,  boolean prioritized) {
    // 基于限流模式判断要统计的节点, 
    // 如果是直连模式,关联模式,对ClusterNode统计,如果是链路模式,则对DefaultNode统计
    Node selectedNode = selectNodeByRequesterAndStrategy(rule, context, node);
    if (selectedNode == null) {
        return true;
    }
	// 判断规则
    return rule.getRater().canPass(selectedNode, acquireCount, prioritized);
}

这里对规则的判断先要通过FlowRule#getRater()获取流量控制器TrafficShapingController,然后再做限流。

TrafficShapingController有3种实现:

  • DefaultController:快速失败,默认的方式,基于滑动时间窗口算法

  • WarmUpController:预热模式,基于滑动时间窗口算法,只不过阈值是动态的

  • RateLimiterController:排队等待模式,基于漏桶算法

最终的限流判断都在TrafficShapingController的canPass方法中。

2.9.2.滑动时间窗口

滑动时间窗口的功能分两部分来看:

  • 一是时间区间窗口的QPS计数功能,这个是在StatisticSlot中调用的

  • 二是对滑动窗口内的时间区间窗口QPS累加,这个是在FlowRule中调用的

先来看时间区间窗口的QPS计数功能。

2.9.2.1.时间窗口请求量统计

回顾2.5章节中的StatisticSlot部分,有这样一段代码:

就是在统计通过该节点的QPS,我们跟入看看,这里进入了DefaultNode内部:

发现同时对DefaultNodeClusterNode在做QPS统计,我们知道DefaultNodeClusterNode都是StatisticNode的子类,这里调用addPassRequest()方法,最终都会进入StatisticNode中。

随便跟入一个:

这里有秒、分两种纬度的统计,对应两个计数器。找到对应的成员变量,可以看到:

两个计数器都是ArrayMetric类型,并且传入了两个参数:

// intervalInMs:是滑动窗口的时间间隔,默认为 1 秒
// sampleCount: 时间窗口的分隔数量,默认为 2,就是把 1秒分为 2个小时间窗
public ArrayMetric(int sampleCount, int intervalInMs) {
    this.data = new OccupiableBucketLeapArray(sampleCount, intervalInMs);
}

如图:

接下来,我们进入ArrayMetric类的addPass方法:

@Override
public void addPass(int count) {
    // 获取当前时间所在的时间窗
    WindowWrap<MetricBucket> wrap = data.currentWindow();
    // 计数器 +1
    wrap.value().addPass(count);
}

那么,计数器如何知道当前所在的窗口是哪个呢?

这里的data是一个LeapArray:

LeapArray的四个属性:

public abstract class LeapArray<T> {
    // 小窗口的时间长度,默认是500ms ,值 = intervalInMs / sampleCount
    protected int windowLengthInMs;
    // 滑动窗口内的 小窗口 数量,默认为 2
    protected int sampleCount;
    // 滑动窗口的时间间隔,默认为 1000ms
    protected int intervalInMs;
    // 滑动窗口的时间间隔,单位为秒,默认为 1
    private double intervalInSecond;
}

LeapArray是一个环形数组,因为时间是无限的,数组长度不可能无限,因此数组中每一个格子放入一个时间窗(window),当数组放满后,角标归0,覆盖最初的window。

因为滑动窗口最多分成sampleCount数量的小窗口,因此数组长度只要大于sampleCount,那么最近的一个滑动窗口内的2个小窗口就永远不会被覆盖,就不用担心旧数据被覆盖的问题了。

我们跟入data.currentWindow();方法:

public WindowWrap<T> currentWindow(long timeMillis) {
    if (timeMillis < 0) {
        return null;
    }
	// 计算当前时间对应的数组角标
    int idx = calculateTimeIdx(timeMillis);
    // 计算当前时间所在窗口的开始时间.
    long windowStart = calculateWindowStart(timeMillis);

    /*
         * 先根据角标获取数组中保存的 oldWindow 对象,可能是旧数据,需要判断.
         *
         * (1) oldWindow 不存在, 说明是第一次,创建新 window并存入,然后返回即可
         * (2) oldWindow的 starTime = 本次请求的 windowStar, 说明正是要找的窗口,直接返回.
         * (3) oldWindow的 starTime < 本次请求的 windowStar, 说明是旧数据,需要被覆盖,创建 
         *     新窗口,覆盖旧窗口
         */
    while (true) {
        WindowWrap<T> old = array.get(idx);
        if (old == null) {
            // 创建新 window
            WindowWrap<T> window = new WindowWrap<T>(windowLengthInMs, windowStart, newEmptyBucket(timeMillis));
            // 基于CAS写入数组,避免线程安全问题
            if (array.compareAndSet(idx, null, window)) {
                // 写入成功,返回新的 window
                return window;
            } else {
                // 写入失败,说明有并发更新,等待其它人更新完成即可
                Thread.yield();
            }
        } else if (windowStart == old.windowStart()) {
            return old;
        } else if (windowStart > old.windowStart()) {
            if (updateLock.tryLock()) {
                try {
                    // 获取并发锁,覆盖旧窗口并返回
                    return resetWindowTo(old, windowStart);
                } finally {
                    updateLock.unlock();
                }
            } else {
                // 获取锁失败,等待其它线程处理就可以了
                Thread.yield();
            }
        } else if (windowStart < old.windowStart()) {
            // 这种情况不应该存在,写这里只是以防万一。
            return new WindowWrap<T>(windowLengthInMs, windowStart, newEmptyBucket(timeMillis));
        }
    }
}

找到当前时间所在窗口(WindowWrap)后,只要调用WindowWrap对象中的add方法,计数器+1即可。

这里只负责统计每个窗口的请求量,不负责拦截。限流拦截要看FlowSlot中的逻辑。

2.9.2.2.滑动窗口QPS计算

在2.9.1小节我们讲过,FlowSlot的限流判断最终都由TrafficShapingController接口中的canPass方法来实现。该接口有三个实现类:

  • DefaultController:快速失败,默认的方式,基于滑动时间窗口算法

  • WarmUpController:预热模式,基于滑动时间窗口算法,只不过阈值是动态的

  • RateLimiterController:排队等待模式,基于漏桶算法

因此,我们跟入默认的DefaultController中的canPass方法来分析:

@Override
public boolean canPass(Node node, int acquireCount, boolean prioritized) {
    // 计算目前为止滑动窗口内已经存在的请求量
    int curCount = avgUsedTokens(node);
    // 判断:已使用请求量 + 需要的请求量(1) 是否大于 窗口的请求阈值
    if (curCount + acquireCount > count) {
        // 大于,说明超出阈值,返回false
        if (prioritized && grade == RuleConstant.FLOW_GRADE_QPS) {
            long currentTime;
            long waitInMs;
            currentTime = TimeUtil.currentTimeMillis();
            waitInMs = node.tryOccupyNext(currentTime, acquireCount, count);
            if (waitInMs < OccupyTimeoutProperty.getOccupyTimeout()) {
                node.addWaitingRequest(currentTime + waitInMs, acquireCount);
                node.addOccupiedPass(acquireCount);
                sleep(waitInMs);

                // PriorityWaitException indicates that the request will pass after waiting for {@link @waitInMs}.
                throw new PriorityWaitException(waitInMs);
            }
        }
        return false;
    }
    // 小于等于,说明在阈值范围内,返回true
    return true;
}

因此,判断的关键就是int curCount = avgUsedTokens(node);

private int avgUsedTokens(Node node) {
    if (node == null) {
        return DEFAULT_AVG_USED_TOKENS;
    }
    return grade == RuleConstant.FLOW_GRADE_THREAD ? node.curThreadNum() : (int)(node.passQps());
}

因为我们采用的是限流,走node.passQps()逻辑:

// 这里又进入了 StatisticNode类
@Override
public double passQps() {
    // 请求量 ÷ 滑动窗口时间间隔 ,得到的就是QPS
    return rollingCounterInSecond.pass() / rollingCounterInSecond.getWindowIntervalInSec();
}

那么rollingCounterInSecond.pass()是如何得到请求量的呢?

// rollingCounterInSecond 本质是ArrayMetric,之前说过
@Override
public long pass() {
    // 获取当前窗口
    data.currentWindow();
    long pass = 0;
    // 获取 当前时间的 滑动窗口范围内 的所有小窗口
    List<MetricBucket> list = data.values();
	// 遍历
    for (MetricBucket window : list) {
        // 累加求和
        pass += window.pass();
    }
    // 返回
    return pass;
}

来看看data.values()如何获取 滑动窗口范围内 的所有小窗口:

// 此处进入LeapArray类中:

public List<T> values(long timeMillis) {
    if (timeMillis < 0) {
        return new ArrayList<T>();
    }
    // 创建空集合,大小等于 LeapArray长度
    int size = array.length();
    List<T> result = new ArrayList<T>(size);
	// 遍历 LeapArray
    for (int i = 0; i < size; i++) {
        // 获取每一个小窗口
        WindowWrap<T> windowWrap = array.get(i);
        // 判断这个小窗口是否在 滑动窗口时间范围内(1秒内)
        if (windowWrap == null || isWindowDeprecated(timeMillis, windowWrap)) {
            // 不在范围内,则跳过
            continue;
        }
        // 在范围内,则添加到集合中
        result.add(windowWrap.value());
    }
    // 返回集合
    return result;
}

那么,isWindowDeprecated(timeMillis, windowWrap)又是如何判断窗口是否符合要求呢?

public boolean isWindowDeprecated(long time, WindowWrap<T> windowWrap) {
    // 当前时间 - 窗口开始时间  是否大于 滑动窗口的最大间隔(1秒)
    // 也就是说,我们要统计的时 距离当前时间1秒内的 小窗口的 count之和
    return time - windowWrap.windowStart() > intervalInMs;
}

2.9.3.漏桶

上一节我们讲过,FlowSlot的限流判断最终都由TrafficShapingController接口中的canPass方法来实现。该接口有三个实现类:

  • DefaultController:快速失败,默认的方式,基于滑动时间窗口算法

  • WarmUpController:预热模式,基于滑动时间窗口算法,只不过阈值是动态的

  • RateLimiterController:排队等待模式,基于漏桶算法

因此,我们跟入默认的RateLimiterController中的canPass方法来分析:

@Override
public boolean canPass(Node node, int acquireCount, boolean prioritized) {
    // Pass when acquire count is less or equal than 0.
    if (acquireCount <= 0) {
        return true;
    }
    // 阈值小于等于 0 ,阻止请求
    if (count <= 0) {
        return false;
    }
	// 获取当前时间
    long currentTime = TimeUtil.currentTimeMillis();
    // 计算两次请求之间允许的最小时间间隔
    long costTime = Math.round(1.0 * (acquireCount) / count * 1000);

    // 计算本次请求 允许执行的时间点 = 最近一次请求的可执行时间 + 两次请求的最小间隔
    long expectedTime = costTime + latestPassedTime.get();
	// 如果允许执行的时间点小于当前时间,说明可以立即执行
    if (expectedTime <= currentTime) {
        // 更新上一次的请求的执行时间
        latestPassedTime.set(currentTime);
        return true;
    } else {
        // 不能立即执行,需要计算 预期等待时长
        // 预期等待时长 = 两次请求的最小间隔 +最近一次请求的可执行时间 - 当前时间
        long waitTime = costTime + latestPassedTime.get() - TimeUtil.currentTimeMillis();
        // 如果预期等待时间超出阈值,则拒绝请求
        if (waitTime > maxQueueingTimeMs) {
            return false;
        } else {
            // 预期等待时间小于阈值,更新最近一次请求的可执行时间,加上costTime
            long oldTime = latestPassedTime.addAndGet(costTime);
            try {
                // 保险起见,再判断一次预期等待时间,是否超过阈值
                waitTime = oldTime - TimeUtil.currentTimeMillis();
                if (waitTime > maxQueueingTimeMs) {
                    // 如果超过,则把刚才 加 的时间再 减回来
                    latestPassedTime.addAndGet(-costTime);
                    // 拒绝
                    return false;
                }
                // in race condition waitTime may <= 0
                if (waitTime > 0) {
                    // 预期等待时间在阈值范围内,休眠要等待的时间,醒来后继续执行
                    Thread.sleep(waitTime);
                }
                return true;
            } catch (InterruptedException e) {
            }
        }
    }
    return false;
}

与我们之前分析的漏桶算法基本一致:

2.10.DegradeSlot

最后一关,就是降级规则判断了。

Sentinel的降级是基于状态机来实现的:

对应的实现在DegradeSlot类中,核心API:

@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, 
                  int count, boolean prioritized, Object... args) throws Throwable {
    // 熔断降级规则判断
    performChecking(context, resourceWrapper);
	// 继续下一个slot
    fireEntry(context, resourceWrapper, node, count, prioritized, args);
}

继续进入performChecking方法:

void performChecking(Context context, ResourceWrapper r) throws BlockException {
    // 获取当前资源上的所有的断路器 CircuitBreaker
    List<CircuitBreaker> circuitBreakers = DegradeRuleManager.getCircuitBreakers(r.getName());
    if (circuitBreakers == null || circuitBreakers.isEmpty()) {
        return;
    }
    for (CircuitBreaker cb : circuitBreakers) {
        // 遍历断路器,逐个判断
        if (!cb.tryPass(context)) {
            throw new DegradeException(cb.getRule().getLimitApp(), cb.getRule());
        }
    }
}

2.10.1.CircuitBreaker

我们进入CircuitBreaker的tryPass方法中:

@Override
public boolean tryPass(Context context) {
    // 判断状态机状态
    if (currentState.get() == State.CLOSED) {
        // 如果是closed状态,直接放行
        return true;
    }
    if (currentState.get() == State.OPEN) {
        // 如果是OPEN状态,断路器打开
        // 继续判断OPEN时间窗是否结束,如果是则把状态从OPEN切换到 HALF_OPEN,返回true
        return retryTimeoutArrived() && fromOpenToHalfOpen(context);
    }
    // OPEN状态,并且时间窗未到,返回false
    return false;
}

有关时间窗的判断在retryTimeoutArrived()方法:

protected boolean retryTimeoutArrived() {
    // 当前时间 大于 下一次 HalfOpen的重试时间
    return TimeUtil.currentTimeMillis() >= nextRetryTimestamp;
}

OPEN到HALF_OPEN切换在fromOpenToHalfOpen(context)方法:

protected boolean fromOpenToHalfOpen(Context context) {
    // 基于CAS修改状态,从 OPEN到 HALF_OPEN
    if (currentState.compareAndSet(State.OPEN, State.HALF_OPEN)) {
        // 状态变更的事件通知
        notifyObservers(State.OPEN, State.HALF_OPEN, null);
        // 得到当前资源
        Entry entry = context.getCurEntry();
        // 给资源设置监听器,在资源Entry销毁时(资源业务执行完毕时)触发
        entry.whenTerminate(new BiConsumer<Context, Entry>() {
            @Override
            public void accept(Context context, Entry entry) {
                // 判断 资源业务是否异常
                if (entry.getBlockError() != null) {
                    // 如果异常,则再次进入OPEN状态
                    currentState.compareAndSet(State.HALF_OPEN, State.OPEN);
                    notifyObservers(State.HALF_OPEN, State.OPEN, 1.0d);
                }
            }
        });
        return true;
    }
    return false;
}

这里出现了从OPEN到HALF_OPEN、从HALF_OPEN到OPEN的变化,但是还有几个没有:

  • 从CLOSED到OPEN

  • 从HALF_OPEN到CLOSED

2.10.2.触发断路器

请求经过所有插槽 后,一定会执行exit方法,而在DegradeSlot的exit方法中:

会调用CircuitBreaker的onRequestComplete方法。而CircuitBreaker有两个实现:

我们这里以异常比例熔断为例来看,进入ExceptionCircuitBreakeronRequestComplete方法:

@Override
public void onRequestComplete(Context context) {
    // 获取资源 Entry
    Entry entry = context.getCurEntry();
    if (entry == null) {
        return;
    }
    // 尝试获取 资源中的 异常
    Throwable error = entry.getError();
    // 获取计数器,同样采用了滑动窗口来计数
    SimpleErrorCounter counter = stat.currentWindow().value();
    if (error != null) {
        // 如果出现异常,则 error计数器 +1
        counter.getErrorCount().add(1);
    }
    // 不管是否出现异常,total计数器 +1
    counter.getTotalCount().add(1);
	// 判断异常比例是否超出阈值
    handleStateChangeWhenThresholdExceeded(error);
}

来看阈值判断的方法:

private void handleStateChangeWhenThresholdExceeded(Throwable error) {
    // 如果当前已经是OPEN状态,不做处理
    if (currentState.get() == State.OPEN) {
        return;
    }
	// 如果已经是 HALF_OPEN 状态,判断是否需求切换状态
    if (currentState.get() == State.HALF_OPEN) {
        if (error == null) {
            // 没有异常,则从 HALF_OPEN 到 CLOSED
            fromHalfOpenToClose();
        } else {
            // 有一次,再次进入OPEN
            fromHalfOpenToOpen(1.0d);
        }
        return;
    }
	// 说明当前是CLOSE状态,需要判断是否触发阈值
    List<SimpleErrorCounter> counters = stat.values();
    long errCount = 0;
    long totalCount = 0;
    // 累加计算 异常请求数量、总请求数量
    for (SimpleErrorCounter counter : counters) {
        errCount += counter.errorCount.sum();
        totalCount += counter.totalCount.sum();
    }
    // 如果总请求数量未达到阈值,什么都不做
    if (totalCount < minRequestAmount) {
        return;
    }
    double curCount = errCount;
    if (strategy == DEGRADE_GRADE_EXCEPTION_RATIO) {
        // 计算请求的异常比例
        curCount = errCount * 1.0d / totalCount;
    }
    // 如果比例超过阈值,切换到 OPEN
    if (curCount > threshold) {
        transformToOpen(curCount);
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/254127.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux下I2C调试工具--for--Zynq MPSOC/Jetson Xavier

Linux下I2C调试工具 1、简介 i2c-tools是一个专门调试i2c的工具&#xff0c;无需编写任何代码即可轻松调试IC设备&#xff0c;可获取挂载的设备及设备地址&#xff0c;还可以在对应的设备指定寄存器设置值或者获取值等功能。i2c-tools有如下几个常用测试命令i2cdetect, i2cdu…

【Go】基于GoFiber从零开始搭建一个GoWeb后台管理系统(四)用户管理、部门管理模块

第一篇&#xff1a;【Go】基于GoFiber从零开始搭建一个GoWeb后台管理系统&#xff08;一&#xff09;搭建项目 第二篇&#xff1a;【Go】基于GoFiber从零开始搭建一个GoWeb后台管理系统&#xff08;二&#xff09;日志输出中间件、校验token中间件、配置路由、基础工具函数。 …

新手运行若依项目|若依项目各部分介绍|并修改自己需要的页面

新手运行若依项目|若依项目各部分介绍|并修改自己需要的页面 文章目录 新手运行若依项目|若依项目各部分介绍|并修改自己需要的页面前言IEDA如何运行若依项目若依项目目录简介ruo-yi common工具类ruoyi-framework 框架核心其他部分ruo一admin后台服务通用配置 application.yml数…

STM32 TIM定时中断设计

单片机学习 目录 文章目录 一、定时器定时中断设计步骤 二、定时器配置 1.RCC开启时钟 2.选择时钟源 3.配置时基单元 4.配置输出中断控制 5.配置NVIC 6.运行控制 三、设计中断函数 总结 一、定时器定时中断设计步骤 定时中断基本框架结构图&#xff1a; 根据结构图可按步骤配置…

AWS RDS慢日志文件另存到ES并且每天发送邮件统计慢日志

1.背景&#xff1a;需要对aws rds慢日志文件归档到es&#xff0c;让开发能够随时查看。 2.需求&#xff1a;并且每天把最新的慢日志&#xff0c;过滤最慢的5条sql 发送给各个产品线的开发负责人。 3.准备&#xff1a; aws ak/sk &#xff0c;如果rds 在不同区域需要认证不同的…

【Linux】进程周边005之环境变量

&#x1f440;樊梓慕&#xff1a;个人主页 &#x1f3a5;个人专栏&#xff1a;《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》《C》《Linux》 &#x1f31d;每一个不曾起舞的日子&#xff0c;都是对生命的辜负 目录 前言 1.环境变量是什么&#xff1…

工具化法则

《卓越成效的程序员》是若干程序员系列书籍我比较喜欢的一本&#xff0c;类似的还有《卓越程序员密码》等。《卓越成效的程序员》高明之处是不仅仅给出原则&#xff0c;还大谈工具和代码&#xff0c;这如同诸多鸡汤文在”布道”的层面之下实战干货&#xff0c;深得广大从业人员…

使用openMVS库,在VS2022中启用c++17标准编译仍然报错

使用openMVS库&#xff0c;在VS2022中启用c17标准编译仍然报错 现象 项目中引用了某些开源库&#xff08;例如openmvs2.1.0&#xff09;&#xff0c;编译时要求启用编译器对c17的支持。 没问题&#xff01;大家都知道在下图所示的位置调整C语言标准&#xff1a; 但是&#…

【Transformer】Transformer and BERT(1)

文章目录 TransformerBERT 太…完整了&#xff01;同济大佬唐宇迪博士终于把【Transformer】入门到精通全套课程分享出来了&#xff0c;最新前沿方向 学习笔记 Transformer 无法并行&#xff0c;层数比较少 词向量生成之后&#xff0c;不会变&#xff0c;没有结合语境信息的情…

动态加载库

no_mangle 不要改标识符 首先是认识这个标注&#xff1a;mangle&#xff0c;英文的含义“撕裂、碾压”。我第一次把这个单次误以为是manage&#xff0c;说实话两个单词还挺像的。 RUS中函数或静态变量使用#[no_mangle]这个标注属性后&#xff0c;编译器就不会修改它们的名字了…

机器学习 | KNN算法

一、KNN算法核心思想和原理 1.1、怎么想出来的&#xff1f; 近朱者赤&#xff0c;近墨者黑&#xff01; 距离决定一切、民主集中制 1.2、基本原理 —— 分类 k个最近的邻居 民主集中制投票分类表决与加权分类表决 1.3、基本原理 —— 回归 计算未知点的值决策规则不同均值法与…

windows10-EMQX与MQTTX的安装及配置使用教程

windows10-EMQX安装及配置使用教程 一、下载安装1.1 下载1.2 安装1.3 设置开机自启动 二、连接MQTT2.1 MQTT下载安装2.1.1 下载2.1.2 安装及配置 三、EMQX常用命令 本文介绍的是在windows10系统下的emqx的安装、配置及使用教程。 一、下载安装 1.1 下载 下载链接&#xff1a…

设计模式之创建型设计模式(一):单例模式 原型模式

单例模式 Singleton 1、什么是单例模式 在软件设计中&#xff0c;单例模式是一种创建型设计模式&#xff0c;其主要目的是确保一个类只有一个实例&#xff0c;并提供一个全局访问点。 这意味着无论何时需要该类的实例&#xff0c;都可以获得相同的实例&#xff0c;而不会创建…

1.新入手的32位单片机资源和资料总览

前言&#xff1a; 学了将近1年的linux驱动和uboot&#xff0c;感觉反馈不足&#xff0c;主要是一直在学各种框架&#xff0c;而且也遇到了门槛&#xff0c;比如驱动部分&#xff0c;还不能随心所欲地编程&#xff0c;原因是有些外设的原理还不够深刻、有些复杂的底层驱动的代码…

Vue3知识点总结

目录 一.创建Vue2工程 1.使用 vue-cli 创建 2.使用 vite 创建 二.常用 Composition API setup ref函数 reactive函数 计算属性与监视 1.computed函数 2.watch函数 3.watchEffect函数 一.创建Vue2工程 1.使用 vue-cli 创建 查看vue/cli版本&#xff0c;确保vue/cli版本…

【2023海光杯】“智能储物柜系统”电控部分

简单说明 在代码实现部分会给出设计理念和分析&#xff0c;整体资源可以直接下载压缩包&#xff08;手机端依然看不到&#xff0c;还是不知道为什么&#xff09;。 使用设备 按照题目要求需要制作16个储物格&#xff0c;对应16扇门。16扇门的开关可以用矩阵键盘来控制。 在不考…

C# 基本桌面编程(二)

一、前言 本章为C# 基本桌面编程技术的第二节也是最后一节。前一节在下面这个链接 C# 基本桌面编程&#xff08;一&#xff09;https://blog.csdn.net/qq_71897293/article/details/135024535?spm1001.2014.3001.5502 二、控件布局 1 叠放顺序 在WPF当中布局&#xff0c;通…

【咕咕送书 | 第7期】深入探索Spring Batch:大规模批处理的领航者

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏:《linux深造日志》《粉丝福利》 ⛺️生活的理想&#xff0c;就是为了理想的生活! ⛳️ 写在前面参与规则 ✅参与方式&#xff1a;关注博主、点赞、收藏、评论&#xff0c;任意评论&#xff08;每人最多评论…

bp神经网络对csv文件或者xlsx文件进行数据预测

1.input(1:m,:)‘含义 矩阵A第一列的转置矩阵。(x,y)表示二维矩阵第x行第y列位置的元素&#xff0c;x为:则表示所有的行。因此&#xff0c;A(:,1)就表示A的第1列的所有元素&#xff0c;这是一个列向量。 所以这里input(1:m,:)表示1到m行&#xff0c;所有列&#xff0c;而后面…

Win32程序与MFC程序构建顺序梳理

Windows程序的生成顺序 Windows窗口的生命周期 初始化操作 从WinMain函数开始&#xff0c;注册窗口&#xff1b;创建窗口&#xff1b; 调用CreateWindow,为程序建立了一个窗口&#xff0c;作为程序的屏幕 舞台。CreateWindow产生窗口之后会送出WM_CREATE消息给窗口函数&…