机器学习 | KNN算法

一、KNN算法核心思想和原理

1.1、怎么想出来的?

        近朱者赤,近墨者黑!

        距离决定一切、民主集中制

1.2、基本原理 —— 分类

  •  k个最近的邻居
  •  民主集中制投票
  • 分类表决与加权分类表决

        

 1.3、基本原理 —— 回归

  • 计算未知点的值
  • 决策规则不同
  • 均值法与加权均值法

         

1.4、如何选择K值?

  • K太小导致“过拟合”(过分相信某个数据),容易把噪声学进来
  • K太大导致“欠拟合”,决策效率低

        

  • K不能太小也不能太大
  • Fit = 最优拟合(找三五个熟悉的人问问),通过超参数调参实现 ~

1.5、距离的度量

  •  明氏距离  Minkowski Distance
    • p为距离的阶数,n为特征空间的维度
    • p=1时,即曼哈顿距离;p=2时,即欧式距离
    • p趋向于无穷时,为切比雪夫距离
  • ·p=1时,曼哈顿距离  Manhattan Distance
  • ·p=2时,欧式距离  Euclidean Distance
    • 空间中两点的直线距离

1.6、特征归一化的重要性

         简单来讲,就是统一坐标轴比例


 二、代码实现 KNN 预测

KNN 预测的过程

  • 1. 计算新样本点与已知样本点的距离
  • 2. 按距离排序
  • 3. 确定k值
  • 4. 距离最近的k个点投票

 若不使用scikit-learn:

import numpy as np
import matplotlib.pyplot as plt
from collections import Counter

# 样本特征
data_X = [
    [1.3, 6],
    [3.5, 5],
    [4.2, 2],
    [5, 3.3],
    [2, 9],
    [5, 7.5],
    [7.2, 4 ],
    [8.1, 8],
    [9, 2.5]
]
# 样本标记
data_y = [0,0,0,0,1,1,1,1,1]
# 训练集
X_train = np.array(data_X)
y_train = np.array(data_y)
# 新的样本点
data_new = np.array([4,5])

# 1. 计算新样本点与已知样本点的距离
distance = [np.sqrt(np.sum(data - data_new)**2) for data in X_train]
# 2. 按距离排序
sort_index = np.argsort(distance)
# 3. 确定k值
k = 5
# 4. 距离最近的k个点投票
first_k = [y_train[i] for i in sort_index[:k]]
predict_y = Counter(first_k).most_common(1)[0][0]

print(predict_y)

若使用sklearn:

import numpy as np
from sklearn.neighbors import KNeighborsClassifier

# 样本特征
data_X = [
    [1.3, 6],
    [3.5, 5],
    [4.2, 2],
    [5, 3.3],
    [2, 9],
    [5, 7.5],
    [7.2, 4 ],
    [8.1, 8],
    [9, 2.5]
]
# 样本标记
data_y = [0,0,0,0,1,1,1,1,1]
# 训练集
X_train = np.array(data_X)
y_train = np.array(data_y)
# 新的样本点
data_new = np.array([4,5])

# 创造类的实例
knn_classifier = KNeighborsClassifier(n_neighbors=5)
# fit
knn_classifier.fit(X_train,y_train)
# sklearn支持预测多个数据,而我们只有一个数据,所以需要将其转为二维
data_new.reshape(1,-1)
predict_y = knn_classifier.predict(data_new.reshape(1,-1))

print(predict_y)



三、划分数据集:训练集与预测集

为什么要划分数据集?

        评价模型性能

        防止过拟合

        提升泛化能力

3.1、划分数据集代码实现

import numpy as np 
from matplotlib import pyplot as plt
from sklearn.datasets import make_blobs
x, y = make_blobs(
    n_samples = 300, # 样本总数
    n_features = 2,
    centers = 3,
    cluster_std = 1, # 类內标准差
    center_box = (-10, 10),
    random_state = 233, 
    return_centers = False
)
plt.scatter(x[:,0], x[:,1], c = y,s = 15)
plt.show()

划分数据集

index = np.arange(20)
index
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
       17, 18, 19])
np.random.shuffle(index)
index
array([13, 16,  2, 19,  7, 14,  9,  0,  1, 11,  8,  6, 15, 10,  4, 18,  3,
       12, 17,  5])
np.random.permutation(20)
array([12, 19,  6,  7, 11, 10,  4,  8, 16,  3,  2, 15, 18,  5,  9,  0,  1,
       14, 13, 17])
np.random.seed(233)
shuffle = np.random.permutation(len(x))
shuffle
array([ 23,  86, 204, 287, 206, 170, 234,  94, 146, 180, 263,  22,   3,
       264, 194, 290, 229, 177, 208, 202,  10, 188, 262, 120, 148, 121,
        98, 160, 267, 136, 294,   2,  34, 142, 271, 133, 127,  12,  29,
        49, 112, 218,  36,  57,  45,  11,  25, 151, 212, 289, 157,  19,
       275, 176, 144,  82, 161,  77,  51, 152, 135,  16,  65, 189, 298,
       279,  37, 187,  44, 210, 178, 165,   6, 162,  66,  32, 198,  43,
       108, 211,  67, 119, 284,  90,  89,  56, 217, 158, 228, 248, 191,
        47, 296, 123, 181, 200,  40,  87, 232,  97, 113, 122, 220, 153,
       173,  68,  99,  61, 273, 269, 281, 209,   4, 110, 259,  95, 205,
       288,   8, 283, 231, 291, 171, 111, 242, 216, 285,  54, 100,  38,
       185, 235, 174, 201, 107, 223, 222, 196, 268, 114, 147, 166,  85,
        39,  58, 256, 258,  74, 251,  15, 150, 137,  70,  91,  52,  14,
       169,  21, 184, 207, 238, 128, 219, 125, 293, 134,  27, 265,  96,
       270,  18, 109, 126, 203,  88, 249,  92, 213,  60, 227,   5,  59,
         9, 138, 236, 280, 124, 199, 225, 149, 145, 246, 192, 102,  48,
        73,  20,  31,  63, 237,  78,  62, 233, 118, 277,  28,  50,  64,
       117, 197, 140,   7, 105, 252,  71, 190,  76, 103,  93, 183,  72,
         0, 278,  79, 172, 214, 182, 292, 139, 260,  30, 195,  13, 244,
       240, 297, 257, 245, 143, 186, 243, 266, 286, 168, 179,  81, 215,
       129, 167, 106, 261,  42, 276,  69, 224, 253, 247, 155, 154,  17,
       132,  24, 141, 239,  80, 101,  75, 159, 116,  46, 272, 226,  83,
       156,  33, 115, 282, 299,  55, 250, 221, 254, 255,  41, 130, 104,
        26,  53,  84, 274,   1, 163, 230,  35, 241, 164, 193, 175, 131,
       295])
shuffle.shape
(300,)
train_size = 0.7
train_index = shuffle[:int(len(x) * train_size)]
test_index = shuffle[int(len(x) * train_size):]
train_index.shape, test_index.shape
((210,), (90,))
x[train_index].shape, y[train_index].shape
((210, 2), (210,))
x[test_index].shape, y[test_index].shape
((90, 2), (90,))
def my_train_test_split(x, y, train_size = 0.7, random_state = None):
    if random_state:
        np.random.seed(random_state)
    shuffle = np.random.permutation(len(x))
    train_index = shuffle[:int(len(x) * train_size)]
    test_index = shuffle[int(len(x) * train_size):]
    return x[train_index], x[test_index], y[train_index], y[test_index]
x_train, x_test, y_train, y_test = my_train_test_split(x, y, train_size = 0.7, random_state = 233)
x_train.shape, x_test.shape, y_train.shape, y_test.shape
((210, 2), (90, 2), (210,), (90,))
plt.scatter(x_train[:, 0], x_train[:, 1], c = y_train, s = 15)
plt.show()

plt.scatter(x_test[:, 0], x_test[:, 1], c = y_test, s = 15)
plt.show()


3.2、sklearn划分数据集

from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, train_size = 0.7, random_state = 233)
x_train.shape, x_test.shape, y_train.shape, y_test.shape
((210, 2), (90, 2), (210,), (90,))
from collections import Counter
Counter(y_test)
Counter({2: 34, 0: 25, 1: 31})
x_train, x_test, y_train, y_test = train_test_split(x, y, train_size = 0.7, random_state = 233, stratify = y)
Counter(y_test)
Counter({2: 30, 0: 30, 1: 30})


 四、模型评价

import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score

# 1、加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target

# 2、拆分数据集,首先需乱序处理
# 2.1、自己拆分不调包 ~
shuffle_index = np.random.permutation(len(y))
train_ratio = 0.8
train_size = int(len(y)*train_ratio)
train_index = shuffle_index[:train_size]
test_index = shuffle_index[train_size:]

X_train = X[train_index]
y_train = y[train_index]

X_test = X[test_index]
y_test = y[test_index]

# 2.2、调包 ~
X_train, X_test, y_train, y_test = train_test_split(X,y,train_size=0.8,random_state=666)

# 3、预测
knn_classifier = KNeighborsClassifier(n_neighbors=5)
knn_classifier.fit(X_train, y_train)
# 若不关注预测结果只关注预测精度
# accuracy_score(X_test,y_test)
y_predict = knn_classifier.predict(X_test)
print(y_predict)

# 4、评价
accutacy = np.sum(y_predict == y_test) / len(y_test)
# 或使用
accuracy_score(y_test,y_predict)


五、超参数 Hyperpatameter

        人为设置的参数 / 经验值 / 参数搜索

        KNN的三个超参数:

        k个最近的邻居

        分类表决与加权分类表决

        明氏距离中的p

首先加载数据

import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
iris = load_iris()
x = iris.data
y = iris.target
x.shape, y.shape
((150, 4), (150,))
x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.7, random_state=233, stratify=y)
x_train.shape, x_test.shape, y_train.shape, y_test.shape
((105, 4), (45, 4), (105,), (45,))


5.1、超参数

from sklearn.neighbors import KNeighborsClassifier
neigh = KNeighborsClassifier(
    n_neighbors=3,
    weights='distance',#'uniform',
    p = 2
)
neigh.fit(x_train, y_train)

KNeighborsClassifier

KNeighborsClassifier(n_neighbors=3, weights='distance')
neigh.score(x_test, y_test)
0.9777777777777777
best_score = -1
best_n  = -1
best_weight = ''
best_p = -1

for n in range(1, 20):
    for weight in ['uniform', 'distance']:
        for p in range(1, 7):
            neigh = KNeighborsClassifier(
                n_neighbors=n,
                weights=weight,
                p = p
            )
            neigh.fit(x_train, y_train)
            score = neigh.score(x_test, y_test)
            
            if score > best_score:
                best_score = score
                best_n = n
                best_weight = weight
                best_p = p

print("n_neighbors:", best_n)
print("weights:", best_weight)
print("p:", best_p)
print("score:", best_score)
n_neighbors: 5
weights: uniform
p: 2
score: 1.0


5.2、sklearn 超参数搜索

from sklearn.model_selection import GridSearchCV
params = {
    'n_neighbors': [n for n in range(1, 20)],
    'weights': ['uniform', 'distance'],
    'p': [p for p in range(1, 7)]
}
grid = GridSearchCV(
    estimator=KNeighborsClassifier(),
    param_grid=params,
    n_jobs=-1
)
grid.fit(x_train, y_train)

GridSearchCV

GridSearchCV(estimator=KNeighborsClassifier(), n_jobs=-1,
             param_grid={'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
                                         13, 14, 15, 16, 17, 18, 19],
                         'p': [1, 2, 3, 4, 5, 6],
                         'weights': ['uniform', 'distance']})

estimator: KNeighborsClassifier

KNeighborsClassifier()

KNeighborsClassifier

KNeighborsClassifier()
grid.best_params_
{'n_neighbors': 9, 'p': 2, 'weights': 'uniform'}
grid.best_score_
0.961904761904762
grid.best_estimator_

KNeighborsClassifier

KNeighborsClassifier(n_neighbors=9)
grid.best_estimator_.predict(x_test)
array([2, 2, 0, 1, 1, 1, 2, 0, 2, 0, 0, 1, 0, 2, 1, 1, 0, 2, 2, 1, 0, 1,
       1, 2, 2, 0, 0, 1, 1, 0, 2, 2, 0, 1, 1, 2, 1, 1, 0, 0, 0, 2, 0, 1,
       1])
grid.best_estimator_.score(x_test, y_test)
0.9555555555555556


六、特征归一化

        

        特征量纲不同。 为了消除数据特征量纲之间的影响,使得不同指标具有一定程度的可比性,能够同时反应每个指标的重要程度。

6.1、最值归一化方法

        适用于数据分布在有限范围的情况。但受特殊数值影响很大。

        

X[:,0] = (X[:,0] - np.min(X[:,0])) /  (np.max(X[:,0]) - np.min(X[:,0]))
X[:5,0]
array([0.22222222, 0.16666667, 0.11111111, 0.08333333, 0.19444444])

6.2、零均值归一化

        

X[:,0] = (X[:,0] - np.mean(X[:,0]))/np.std(X[:,0])
X[:5,0]
array([-0.90068117, -1.14301691, -1.38535265, -1.50652052, -1.02184904])


 scikit-learn 中的StandardScaler

from sklearn.preprocessing import StandardScaler
standard_scaler = StandardScaler()
standard_scaler.fit(X)

standard_scaler.mean_
array([5.84333333, 3.05733333, 3.758     , 1.19933333])
standard_scaler.scale_
array([0.82530129, 0.43441097, 1.75940407, 0.75969263])

注意要重新赋值给X!

X = standard_scaler.transform(X)

** 测试集如何归一化?

        不是用测试集的均值和标准差,而是用训练集的!

import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier

iris = datasets.load_iris()
X_train,X_test,y_train,y_test = train_test_split(iris.data,iris.target,train_size=0.8,random_state=666)

standard_scaler = StandardScaler()
standard_scaler.fit(X_train)

X_train_standard = standard_scaler.transform(X_train)
X_test_standard = standard_scaler.transform(X_test)

knn_classifier = KNeighborsClassifier(n_neighbors=5)
knn_classifier.fit(X_train_standard,y_train)
knn_classifier.score(X_test_standard, y_test)


七、KNN 回归任务实现

import numpy as np
import matplotlib.pyplot as plt
# 样本特征
data_X = [
    [1.3, 6],
    [3.5, 5],
    [4.2, 2],
    [5, 3.3],
    [2, 9],
    [5, 7.5],
    [7.2, 4 ],
    [8.1, 8],
    [9, 2.5]
]
data_y = [0.1,0.3,0.5,0.7,0.9,1.1,1.3,1.5,1.7]
X_train = np.array(data_X)
y_train = np.array(data_y)
data_new = np.array([4,5])
plt.scatter(X_train[:,0],X_train[:,1],color='black')
plt.scatter(data_new[0], data_new[1],color='b', marker='^')
for i in range(len(y_train)):
    plt.annotate(y_train[i], xy=X_train[i], xytext=(-15,-15), textcoords='offset points')

plt.show()

distances = [np.sqrt(np.sum((data - data_new)**2)) for data in X_train]
sort_index = np.argsort(distances)
k = 5
first_k =  [y_train[i] for i in sort_index[:k]]
from collections import Counter
Counter(first_k).most_common(1)
predict_y = Counter(first_k).most_common(1)[0][0]
predict_y
0.3
k = 5
first_k =  [y_train[i] for i in sort_index[:k]]
np.mean(first_k)
0.54

7.2、KNN回归 Scikit learn 实现

from sklearn.neighbors import KNeighborsRegressor
knn_reg = KNeighborsRegressor(n_neighbors=5)
knn_reg.fit(X_train, y_train)

KNeighborsRegressor

KNeighborsRegressor()
predict_y = knn_reg.predict(data_new.reshape(1,-1))
predict_y
array([0.54])

7.3、Boston 数据集

import numpy as np
import matplotlib.pyplot as plt
import sklearn
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_boston
import warnings
warnings.filterwarnings("ignore")
boston = load_boston()
x = boston.data
y = boston.target
x.shape, y.shape
((506, 13), (506,))
print(boston.DESCR)
.. _boston_dataset:

Boston house prices dataset
---------------------------

**Data Set Characteristics:**  

    :Number of Instances: 506 

    :Number of Attributes: 13 numeric/categorical predictive. Median Value (attribute 14) is usually the target.

    :Attribute Information (in order):
        - CRIM     per capita crime rate by town
        - ZN       proportion of residential land zoned for lots over 25,000 sq.ft.
        - INDUS    proportion of non-retail business acres per town
        - CHAS     Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
        - NOX      nitric oxides concentration (parts per 10 million)
        - RM       average number of rooms per dwelling
        - AGE      proportion of owner-occupied units built prior to 1940
        - DIS      weighted distances to five Boston employment centres
        - RAD      index of accessibility to radial highways
        - TAX      full-value property-tax rate per $10,000
        - PTRATIO  pupil-teacher ratio by town
        - B        1000(Bk - 0.63)^2 where Bk is the proportion of black people by town
        - LSTAT    % lower status of the population
        - MEDV     Median value of owner-occupied homes in $1000's

    :Missing Attribute Values: None

    :Creator: Harrison, D. and Rubinfeld, D.L.

This is a copy of UCI ML housing dataset.
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/


This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.

The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic
prices and the demand for clean air', J. Environ. Economics & Management,
vol.5, 81-102, 1978.   Used in Belsley, Kuh & Welsch, 'Regression diagnostics
...', Wiley, 1980.   N.B. Various transformations are used in the table on
pages 244-261 of the latter.

The Boston house-price data has been used in many machine learning papers that address regression
problems.   
     
.. topic:: References

   - Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.
   - Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.

x_train ,x_test, y_train, y_test = train_test_split(x, y ,train_size = 0.7, random_state=233)
from sklearn.neighbors import KNeighborsRegressor
knn_reg = KNeighborsRegressor(n_neighbors=5, weights='distance', p=2)
knn_reg.fit(x_train, y_train)

KNeighborsRegressor

KNeighborsRegressor(weights='distance')
knn_reg.score(x_test, y_test)
0.49308828546554706

 

归一化

from sklearn.preprocessing import StandardScaler
standardScaler = StandardScaler()
standardScaler.fit(x_train)

StandardScaler

StandardScaler()
x_train = standardScaler.transform(x_train)
x_test = standardScaler.transform(x_test)
knn_reg.fit(x_train, y_train)

KNeighborsRegressor

KNeighborsRegressor(weights='distance')
knn_reg.score(x_test, y_test)
0.8315777292735131


代码参考于

Chapter-04/4-7 特征归一化.ipynb · 梗直哥/Machine-Learning - Gitee.com

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/254111.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

windows10-EMQX与MQTTX的安装及配置使用教程

windows10-EMQX安装及配置使用教程 一、下载安装1.1 下载1.2 安装1.3 设置开机自启动 二、连接MQTT2.1 MQTT下载安装2.1.1 下载2.1.2 安装及配置 三、EMQX常用命令 本文介绍的是在windows10系统下的emqx的安装、配置及使用教程。 一、下载安装 1.1 下载 下载链接&#xff1a…

设计模式之创建型设计模式(一):单例模式 原型模式

单例模式 Singleton 1、什么是单例模式 在软件设计中,单例模式是一种创建型设计模式,其主要目的是确保一个类只有一个实例,并提供一个全局访问点。 这意味着无论何时需要该类的实例,都可以获得相同的实例,而不会创建…

1.新入手的32位单片机资源和资料总览

前言: 学了将近1年的linux驱动和uboot,感觉反馈不足,主要是一直在学各种框架,而且也遇到了门槛,比如驱动部分,还不能随心所欲地编程,原因是有些外设的原理还不够深刻、有些复杂的底层驱动的代码…

Vue3知识点总结

目录 一.创建Vue2工程 1.使用 vue-cli 创建 2.使用 vite 创建 二.常用 Composition API setup ref函数 reactive函数 计算属性与监视 1.computed函数 2.watch函数 3.watchEffect函数 一.创建Vue2工程 1.使用 vue-cli 创建 查看vue/cli版本,确保vue/cli版本…

【2023海光杯】“智能储物柜系统”电控部分

简单说明 在代码实现部分会给出设计理念和分析,整体资源可以直接下载压缩包(手机端依然看不到,还是不知道为什么)。 使用设备 按照题目要求需要制作16个储物格,对应16扇门。16扇门的开关可以用矩阵键盘来控制。 在不考…

C# 基本桌面编程(二)

一、前言 本章为C# 基本桌面编程技术的第二节也是最后一节。前一节在下面这个链接 C# 基本桌面编程(一)https://blog.csdn.net/qq_71897293/article/details/135024535?spm1001.2014.3001.5502 二、控件布局 1 叠放顺序 在WPF当中布局,通…

【咕咕送书 | 第7期】深入探索Spring Batch:大规模批处理的领航者

🎬 鸽芷咕:个人主页 🔥 个人专栏:《linux深造日志》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! ⛳️ 写在前面参与规则 ✅参与方式:关注博主、点赞、收藏、评论,任意评论(每人最多评论…

bp神经网络对csv文件或者xlsx文件进行数据预测

1.input(1:m,:)‘含义 矩阵A第一列的转置矩阵。(x,y)表示二维矩阵第x行第y列位置的元素,x为:则表示所有的行。因此,A(:,1)就表示A的第1列的所有元素,这是一个列向量。 所以这里input(1:m,:)表示1到m行,所有列,而后面…

Win32程序与MFC程序构建顺序梳理

Windows程序的生成顺序 Windows窗口的生命周期 初始化操作 从WinMain函数开始,注册窗口;创建窗口; 调用CreateWindow,为程序建立了一个窗口,作为程序的屏幕 舞台。CreateWindow产生窗口之后会送出WM_CREATE消息给窗口函数&…

人工智能中的核心概念

1 概述 人工智能英文缩写为AI,是一种由人制造出来的机器,该机器可以模仿人的思想和行为,从而体现出一种智能的反应。 人工智能的产业链分为基础层、技术层、应用层三个层次。 基础层包括:芯片、大数据、算法系统、网络等多项基础…

企业呼叫中心系统怎么样?

随着现代商业环境的变化,呼叫中心系统成为众多企业日常运营的重要组成部分。企业呼叫中心系统是一种集中管理和处理企业电话通信的解决方案,它可以改善客户服务质量,提升服务效率,并为企业带来诸多优势。 企业呼叫中心系统功能概…

2021年数维杯国际大学生数学建模D题2021年电影市场票房波动模型分析求解全过程文档及程序

2021年数维杯国际大学生数学建模 D题 2021年电影市场票房波动模型分析 原题再现: 1、电影票房预测建模背景   随着人们文化消费需求的增加,电影院和银幕的数量不断增加,我国的电影产业不断呈现出繁荣景象。2019年,全国电影票房…

2024年【金属非金属矿山(地下矿山)安全管理人员】及金属非金属矿山(地下矿山)安全管理人员实操考试视频

题库来源:安全生产模拟考试一点通公众号小程序 金属非金属矿山(地下矿山)安全管理人员是安全生产模拟考试一点通总题库中生成的一套金属非金属矿山(地下矿山)安全管理人员实操考试视频,安全生产模拟考试一…

libxls - 编译

文章目录 libxls - 编译概述笔记静态库工程测试控制台exe工程测试备注备注END libxls - 编译 概述 想处理.xls格式的excel文件. 查了一下libxls库可以干这个事. 库地址 https://github.com/libxls/libxls.git 但是这个库的makefile写的有问题, 在mingw和WSL下都编译不了. 好在…

1265. 数星星(树状数组/蓝桥杯)

题目&#xff1a; 输入样例&#xff1a; 5 1 1 5 1 7 1 3 3 5 5输出样例&#xff1a; 1 2 1 1 0 思路&#xff1a; 树状数组 代码&#xff1a; #include<cstdio> #include<iostream> using namespace std; const int N32010; int n; int tr[N],level[N];int lo…

Linux---用户组相关操作

1. 创建用户组 命令说明groupadd创建(添加)用户组 创建用户组效果图: 2. 创建用户并指定用户组 创建用户并指定用户组效果图: 3. 修改用户组 修改用户组效果图: 4. 删除用户组 命令说明groupdel删除用户组 删除用户组效果图: 说明: 如果用户组下面有用户先删除用户在…

回归预测 | MATLAB实现IBL-LSSVM【23年新算法】逻辑优化算法优化最小二乘支持向量机的数据回归预测 (多指标,多图)

回归预测 | MATLAB实现IBL-LSSVM【23年新算法】逻辑优化算法优化最小二乘支持向量机的数据回归预测 &#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现IBL-LSSVM【23年新算法】逻辑优化算法优化最小二乘支持向量机的数据回归预测 &#xff08;多指标…

【C++】封装:练习案例-点和圆的关系

练习案例&#xff1a;点和圆的关系 设计一个圆形类&#xff08;Circle&#xff09;&#xff0c;和一个点类&#xff08;Point&#xff09;&#xff0c;计算点和圆的关系。 思路&#xff1a; 1&#xff09;创建点类point.h和point.cpp 2&#xff09;创建圆类circle.h和circle…

什么是漏电保护芯片?具有什么作用?

漏电保护芯片是一种用于监测电气设备是否存在漏电并提供保护的微型芯片。漏电是电气设备中普遍存在的一种安全隐患,当设备发生漏电时,电流会流回地线,并可能导致电击、火灾等严重后果。因此,漏电保护芯片的使用对于保障人身财产安全具有非常重要的意义。下面就是我们几款漏电保…

格式化Echarts的X轴显示,设置显示间隔

业务需求&#xff1a;x轴间隔4个显示&#xff0c;并且末尾显示23时 x轴为写死的0时-23时&#xff0c;使用Array.from data: Array.from({ length: 24 }).map((_, i) > ${i}时) 需要在axisLabel 里使用 interval: 0, // 强制显示所有刻度标签&#xff0c;然后通过 formatter …