设计模式之创建型设计模式(一):单例模式 原型模式

单例模式 Singleton

1、什么是单例模式

在软件设计中,单例模式是一种创建型设计模式,其主要目的是确保一个类只有一个实例,并提供一个全局访问点。

这意味着无论何时需要该类的实例,都可以获得相同的实例,而不会创建新的对象。

单例模式通常用于控制对资源的访问,例如配置文件、数据库连接,或者共享的实例。

2、为什么使用单例模式

  1. 资源共享:单例模式可以确保在整个应用程序中只有一个实例,从而节省系统资源,避免多次创建相同对象。
  2. 全局访问:通过单例模式,可以在任何需要时轻松访问该类的实例,而无需传递它作为参数。
  3. 懒加载:单例模式可以实现懒加载,即只有在需要时才创建实例,而不是在应用程序启动时就创建。

3、如何实现单例模式

示例场景:设计实现一个 Logger 类,用于记录应用程序中的日志信息。

非单例模式的实现
public class Logger {
    private List<String> logs = new ArrayList<>();

    public void log(String message) {
        logs.add(message);
    }
}

// 在应用程序的不同部分创建Logger实例
Logger logger1 = new Logger();
Logger logger2 = new Logger();

logger1.log("Message from logger1");
logger2.log("Message from logger2");

System.out.println(logger1.getLogs());  // ['Message from logger1']
System.out.println(logger2.getLogs());  // ['Message from logger2']
单例模式的实现
public class Logger {
    private static Logger instance;  // 单例实例
    private List<String> logs = new ArrayList<>();

    private Logger() {}

    public static Logger getInstance() {
        if (instance == null) {
            instance = new Logger();
        }
        return instance;
    }

    public void log(String message) {
        logs.add(message);
    }

    public List<String> getLogs() {
        return logs;
    }
}

// 在应用程序的不同部分获取Logger实例
Logger logger1 = Logger.getInstance();
Logger logger2 = Logger.getInstance();

logger1.log("Message from logger1");
logger2.log("Message from logger2");

System.out.println(logger1.getLogs());  // ['Message from logger1', 'Message from logger2']
System.out.println(logger2.getLogs());  // ['Message from logger1', 'Message from logger2']
代码对比说明
  1. 资源共享:使用单例模式后,Logger 实例在整个应用程序中是唯一的,确保了日志的全局共享,避免了每次创建实例都生成新对象的问题。
  2. 全局访问:单例模式允许在应用程序的任何地方访问相同的 Logger 实例,而不必传递它。这提高了代码的简洁性和可维护性。
  3. 懒加载:单例模式的实现中,通过 getInstance 方法进行了懒加载,只有在实例不存在时才创建。这确保了在应用程序启动时不会预先创建实例,而是在需要时才进行创建,提高了效率。

4、是否存在缺陷和不足

  1. 全局状态:单例模式引入了全局状态,可能会导致代码的耦合性增加。由于单例在整个应用程序中都是可见的,其他部分可能难以预测它的状态,从而使代码难以理解和维护。
  2. 并发控制:在多线程环境中,需要考虑并发控制的问题。当多个线程同时尝试第一次获取单例实例时,可能会导致创建多个实例。为了解决这个问题,需要引入同步机制,但这会带来性能的开销。
  3. 隐藏依赖关系:使用单例模式可能导致隐藏了类之间的依赖关系,因为它可以在任何地方访问单例实例。这使得代码的结构变得不够清晰,降低了模块化的优势。
  4. 单一职责原则破坏:单例模式通常负责两个职责控制实例化过程和提供全局访问点。这可能违反了单一职责原则,使得代码的职责不够清晰。
  5. 测试困难:由于单例模式创建实例的逻辑通常包含在类内部,很难进行单元测试。测试过程可能会依赖于全局状态,导致测试的不确定性。

5、如何缓解缺陷和不足

  1. 使用依赖注入:考虑使用依赖注入来解决单例模式引入的全局状态问题。通过将依赖项传递给需要它们的类,可以更好地控制类之间的关系。
  2. 懒加载与双重检查锁定:在多线程环境中,可以使用懒加载和双重检查锁定等技术来确保实例的唯一性,并提高性能。
  3. 考虑其他创建型模式:根据具体需求,考虑其他创建型设计模式,如工厂方法模式或建造者模式,以避免单例模式的一些限制。
  4. 避免过度使用:单例模式并不适用于所有情况,避免过度使用。在确保有明确需求时使用,而不是为了方便而滥用。

虽然单例模式存在一些缺点,但在许多情况下,它仍然是一种有效的设计选择。在使用单例模式时,需要仔细权衡其优点和缺点,并根据具体情况选择合适的设计方式。

原型模式 Prototype

1、什么是原型模式

原型模式是一种创建型设计模式,核心思想是通过复制现有对象来创建新对象,而不是通过实例化类,这种创建新对象的方式更加高效,尤其当新对象的创建成本较高时,使用原型模式可以提高性能。

2、为什么使用原型模式

  1. 性能提升:当新对象的创建成本较高时,通过复制现有对象可以避免重复执行初始化和配置的开销,提高对象创建的效率。
  2. 灵活性:原型模式可以在运行时动态配置对象,通过克隆可以得到一个与原始对象相似的新对象,而无需修改结构。
  3. 简化对象创建:原型模式隐藏了对象的创建细节,使得对象的创建更加简单和统一。

3、如何实现原型模式

非原型模式的实现
public class Book {
    private String title;
    private String author;

    public Book(String title, String author) {
        this.title = title;
        this.author = author;
    }

    // Getters and setters...

    public Book clone() {
        return new Book(this.title, this.author);
    }
}
原型模式的实现
public class Book implements Cloneable {
    private String title;
    private String author;

    public Book(String title, String author) {
        this.title = title;
        this.author = author;
    }

    // Getters and setters...

    @Override
    public Book clone() {
        try {
            return (Book) super.clone();
        } catch (CloneNotSupportedException e) {
            return null;
        }
    }
}

4、是否存在缺陷和不足

  1. 深克隆问题:默认的 clone 方法是浅克隆,即只克隆对象本身,而不克隆其引用类型的成员变量。如果对象包含引用类型的成员变量,可能需要进行深克隆,以避免共享引用对象。
  2. 构造函数不执行:在使用原型模式时,对象的构造函数不会执行,这可能导致某些初始化逻辑未被执行。

5、如何缓解缺陷和不足

  1. 深克隆的实现:如果需要深克隆,可以通过重写 clone 方法,手动克隆引用类型的成员变量,确保新对象独立于原始对象。
  2. 初始化方法:在原型对象中提供一个初始化方法,可以在克隆对象后手动调用该方法,以确保必要的初始化逻辑得以执行。

通过以上缓解措施,可以更好地应对深克隆和构造函数不执行等问题,使得原型模式更加灵活和实用,在实际应用中,根据具体需求和场景选择是否使用原型模式。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/254108.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

1.新入手的32位单片机资源和资料总览

前言&#xff1a; 学了将近1年的linux驱动和uboot&#xff0c;感觉反馈不足&#xff0c;主要是一直在学各种框架&#xff0c;而且也遇到了门槛&#xff0c;比如驱动部分&#xff0c;还不能随心所欲地编程&#xff0c;原因是有些外设的原理还不够深刻、有些复杂的底层驱动的代码…

Vue3知识点总结

目录 一.创建Vue2工程 1.使用 vue-cli 创建 2.使用 vite 创建 二.常用 Composition API setup ref函数 reactive函数 计算属性与监视 1.computed函数 2.watch函数 3.watchEffect函数 一.创建Vue2工程 1.使用 vue-cli 创建 查看vue/cli版本&#xff0c;确保vue/cli版本…

【2023海光杯】“智能储物柜系统”电控部分

简单说明 在代码实现部分会给出设计理念和分析&#xff0c;整体资源可以直接下载压缩包&#xff08;手机端依然看不到&#xff0c;还是不知道为什么&#xff09;。 使用设备 按照题目要求需要制作16个储物格&#xff0c;对应16扇门。16扇门的开关可以用矩阵键盘来控制。 在不考…

C# 基本桌面编程(二)

一、前言 本章为C# 基本桌面编程技术的第二节也是最后一节。前一节在下面这个链接 C# 基本桌面编程&#xff08;一&#xff09;https://blog.csdn.net/qq_71897293/article/details/135024535?spm1001.2014.3001.5502 二、控件布局 1 叠放顺序 在WPF当中布局&#xff0c;通…

【咕咕送书 | 第7期】深入探索Spring Batch:大规模批处理的领航者

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏:《linux深造日志》《粉丝福利》 ⛺️生活的理想&#xff0c;就是为了理想的生活! ⛳️ 写在前面参与规则 ✅参与方式&#xff1a;关注博主、点赞、收藏、评论&#xff0c;任意评论&#xff08;每人最多评论…

bp神经网络对csv文件或者xlsx文件进行数据预测

1.input(1:m,:)‘含义 矩阵A第一列的转置矩阵。(x,y)表示二维矩阵第x行第y列位置的元素&#xff0c;x为:则表示所有的行。因此&#xff0c;A(:,1)就表示A的第1列的所有元素&#xff0c;这是一个列向量。 所以这里input(1:m,:)表示1到m行&#xff0c;所有列&#xff0c;而后面…

Win32程序与MFC程序构建顺序梳理

Windows程序的生成顺序 Windows窗口的生命周期 初始化操作 从WinMain函数开始&#xff0c;注册窗口&#xff1b;创建窗口&#xff1b; 调用CreateWindow,为程序建立了一个窗口&#xff0c;作为程序的屏幕 舞台。CreateWindow产生窗口之后会送出WM_CREATE消息给窗口函数&…

人工智能中的核心概念

1 概述 人工智能英文缩写为AI&#xff0c;是一种由人制造出来的机器&#xff0c;该机器可以模仿人的思想和行为&#xff0c;从而体现出一种智能的反应。 人工智能的产业链分为基础层、技术层、应用层三个层次。 基础层包括&#xff1a;芯片、大数据、算法系统、网络等多项基础…

企业呼叫中心系统怎么样?

随着现代商业环境的变化&#xff0c;呼叫中心系统成为众多企业日常运营的重要组成部分。企业呼叫中心系统是一种集中管理和处理企业电话通信的解决方案&#xff0c;它可以改善客户服务质量&#xff0c;提升服务效率&#xff0c;并为企业带来诸多优势。 企业呼叫中心系统功能概…

2021年数维杯国际大学生数学建模D题2021年电影市场票房波动模型分析求解全过程文档及程序

2021年数维杯国际大学生数学建模 D题 2021年电影市场票房波动模型分析 原题再现&#xff1a; 1、电影票房预测建模背景   随着人们文化消费需求的增加&#xff0c;电影院和银幕的数量不断增加&#xff0c;我国的电影产业不断呈现出繁荣景象。2019年&#xff0c;全国电影票房…

2024年【金属非金属矿山(地下矿山)安全管理人员】及金属非金属矿山(地下矿山)安全管理人员实操考试视频

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 金属非金属矿山&#xff08;地下矿山&#xff09;安全管理人员是安全生产模拟考试一点通总题库中生成的一套金属非金属矿山&#xff08;地下矿山&#xff09;安全管理人员实操考试视频&#xff0c;安全生产模拟考试一…

libxls - 编译

文章目录 libxls - 编译概述笔记静态库工程测试控制台exe工程测试备注备注END libxls - 编译 概述 想处理.xls格式的excel文件. 查了一下libxls库可以干这个事. 库地址 https://github.com/libxls/libxls.git 但是这个库的makefile写的有问题, 在mingw和WSL下都编译不了. 好在…

1265. 数星星(树状数组/蓝桥杯)

题目&#xff1a; 输入样例&#xff1a; 5 1 1 5 1 7 1 3 3 5 5输出样例&#xff1a; 1 2 1 1 0 思路&#xff1a; 树状数组 代码&#xff1a; #include<cstdio> #include<iostream> using namespace std; const int N32010; int n; int tr[N],level[N];int lo…

Linux---用户组相关操作

1. 创建用户组 命令说明groupadd创建(添加)用户组 创建用户组效果图: 2. 创建用户并指定用户组 创建用户并指定用户组效果图: 3. 修改用户组 修改用户组效果图: 4. 删除用户组 命令说明groupdel删除用户组 删除用户组效果图: 说明: 如果用户组下面有用户先删除用户在…

回归预测 | MATLAB实现IBL-LSSVM【23年新算法】逻辑优化算法优化最小二乘支持向量机的数据回归预测 (多指标,多图)

回归预测 | MATLAB实现IBL-LSSVM【23年新算法】逻辑优化算法优化最小二乘支持向量机的数据回归预测 &#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现IBL-LSSVM【23年新算法】逻辑优化算法优化最小二乘支持向量机的数据回归预测 &#xff08;多指标…

【C++】封装:练习案例-点和圆的关系

练习案例&#xff1a;点和圆的关系 设计一个圆形类&#xff08;Circle&#xff09;&#xff0c;和一个点类&#xff08;Point&#xff09;&#xff0c;计算点和圆的关系。 思路&#xff1a; 1&#xff09;创建点类point.h和point.cpp 2&#xff09;创建圆类circle.h和circle…

什么是漏电保护芯片?具有什么作用?

漏电保护芯片是一种用于监测电气设备是否存在漏电并提供保护的微型芯片。漏电是电气设备中普遍存在的一种安全隐患,当设备发生漏电时,电流会流回地线,并可能导致电击、火灾等严重后果。因此,漏电保护芯片的使用对于保障人身财产安全具有非常重要的意义。下面就是我们几款漏电保…

格式化Echarts的X轴显示,设置显示间隔

业务需求&#xff1a;x轴间隔4个显示&#xff0c;并且末尾显示23时 x轴为写死的0时-23时&#xff0c;使用Array.from data: Array.from({ length: 24 }).map((_, i) > ${i}时) 需要在axisLabel 里使用 interval: 0, // 强制显示所有刻度标签&#xff0c;然后通过 formatter …

【Axure教程】区间评分条

区间评分条是一种图形化的表示工具&#xff0c;用于展示某一范围内的数值或分数&#xff0c;并将其划分成不同的区间。这种评分条通常用于直观地显示数据的分布或某个指标的表现。常用于产品评价、调查和反馈、学术评价、健康评估、绩效评估、满意度调查等场景。 所以今天作者…

大语言模型加速信创软件 IDE 技术革新

QCon 全球软件开发大会&#xff08;上海站&#xff09;将于 12 月 28-29 日举办&#xff0c;会议特别策划「智能化信创软件 IDE」专题&#xff0c;邀请到华为云开发工具和效率领域首席专家、华为软件开发生产线 CodeArts 首席技术总监王亚伟担任专题出品人&#xff0c;为专题质…