【动手学深度学习】(十四)数据增广+微调

文章目录

  • 一、数据增强
    • 1.理论知识
    • 2.代码
  • 二、微调
    • 1.理论知识

一、数据增强

1.理论知识

  • 增加一个已有数据集,使得有更多的多样性
    • 在语言里面加入各种不同的背景噪音
    • 改变图片的颜色和形状

使用增强数据训练
翻转

  • 左右翻转
  • 上下翻转
    • 不总是可行

切割

  • 从图片中切割一块,然后变形到固定形状
    • 随机高宽比
    • 随机大小
    • 随机位置

颜色

  • 改变色调,饱和度,明亮度

[总结]

  • 数据增广通过变形数据来获取多样性从而使得模型泛化性能更好
  • 常见图片增广包括翻转、切割、变色

2.代码

1.读取图像

%matplotlib inline
import torch
import torchvision
from torch import nn
from d2l import torch as d2l


d2l.set_figsize()
img = d2l.Image.open('../img/test.png')
d2l.plt.imshow(img);

在这里插入图片描述

def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):
    Y = [aug(img) for _ in range(num_rows * num_cols)]
    d2l.show_images(Y, num_rows, num_cols, scale=scale)

水平翻转

apply(img, torchvision.transforms.RandomHorizontalFlip())
# 在水平方向进行随机翻转

在这里插入图片描述

上下翻转图像

# 上下翻转图像
apply(img, torchvision.transforms.RandomVerticalFlip())

在这里插入图片描述
随机裁剪

shape_aug = torchvision.transforms.RandomResizedCrop(
    (200, 200), scale=(0.1, 1), ratio=(0.5, 2))
apply(img, shape_aug)

在这里插入图片描述
随机更改图片亮度

apply(img, torchvision.transforms.ColorJitter(
    brightness=0.5, contrast=0, saturation=0, hue=0))

在这里插入图片描述
随机更改图片的色调,亮度(brightness)对比度(contrast)饱和度(saturation)色调(hue)

# 随机更改图片的色调,亮度(brightness)对比度(contrast)饱和度(saturation)色调(hue)
color_aug = torchvision.transforms.ColorJitter(
    brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5)
apply(img, color_aug)

在这里插入图片描述
结合多种图像增广方法

augs = torchvision.transforms.Compose([
    torchvision.transforms.RandomHorizontalFlip(),
    color_aug, shape_aug])
apply(img, augs)

在这里插入图片描述

all_images = torchvision.datasets.CIFAR10(
    train=True, root="../data", download=True)
d2l.show_images([
    all_images[i][0] for i in range(32)], 4, 8, scale=0.8);

在这里插入图片描述

# 只使用最简单的随机左右翻转
train_augs = torchvision.transforms.Compose([
    torchvision.transforms.RandomHorizontalFlip(),
    torchvision.transforms.ToTensor()])

test_augs = torchvision.transforms.Compose([
    torchvision.transforms.ToTensor()])
# 定义一个辅助函数,以便于读取图像和应用图像增广
def load_cifar10(is_train, augs, batch_size):
    dataset = torchvision.datasets.CIFAR10(
        root="../data", train=is_train,
        transform=augs, download=True)
    dataloader = torch.utils.data.DataLoader(
        dataset, batch_size=batch_size, shuffle=is_train,
        num_workers=0)
    return dataloader

二、微调

1.理论知识

标注一个数据集很贵
网络架构
在这里插入图片描述

  • 一个神经网络一般可以分成两块
    • 特征抽取将原始像素变成容易线性分割的特征
    • 线性分类器来做分类

微调
在这里插入图片描述
微调中的权重初始化
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/248471.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构和算法】判断子序列

其他系列文章导航 Java基础合集数据结构与算法合集 设计模式合集 多线程合集 分布式合集 ES合集 文章目录 其他系列文章导航 文章目录 前言 一、题目描述 二、题解 2.1 方法一:双指针 三、代码 3.1 方法一:双指针 3.1.1 Java易懂版:…

解决Chrome同一账号在不同设备无法自动同步书签的问题

文章目录 一、问题与原因?2. 解决办法 一、问题与原因? 1.问题 使用谷歌Chrome浏览器比较头疼的问题就是:使用同一个Google账号,办公电脑与家用电脑的数据无法同步。比如:办公电脑中的书签、浏览记录等数据&#xff0…

drf入门规范

一 Web应用模式 在开发Web应用中,有两种应用模式: 1.1 前后端不分离 1.2 前后端分离 二 API接口 为了在团队内部形成共识、防止个人习惯差异引起的混乱,我们需要找到一种大家都觉得很好的接口实现规范,而且这种规范能够让后端写…

Tomcat部署与调优

目录 前瞻 什么是tomcat? 什么是servlet? 什么是JSP? Tomcat功能组件结构 Container结构分析 Tomcat请求过程 Tomcat服务部署 1.关闭防火墙,将安装 Tomcat 所需软件包传到/opt目录下 2.安装JDK 3.设置JDK环境变量 4.安装启动Tomc…

1130 - Host “WIN-CA4FHERGO9J‘ is not allowed to connect to this MySQL server

1、知识小课堂 1.1 Mysql MySQL是一个关系型数据库管理系统,由瑞典MySQL AB公司开发,属于Oracle旗下产品。它是最流行的关系型数据库管理系统之一,在WEB应用方面,MySQL是最好的RDBMS (Relational Database Management System&am…

[每周一更]-(第27期):HTTP压测工具之wrk

[补充完善往期内容] wrk是一款简单的HTTP压测工具,托管在Github上,https://github.com/wg/wrkwrk 的一个很好的特性就是能用很少的线程压出很大的并发量. 原因是它使用了一些操作系统特定的高性能 io 机制, 比如 select, epoll, kqueue 等. 其实它是复用了 redis 的 ae 异步事…

逻辑回归代价函数

逻辑回归的代价函数通常使用交叉熵损失来定义。这种损失函数非常适合于二元分类问题。 本篇来推导一下逻辑回归的代价函数。 首先,我们在之前了解了逻辑回归的定义:逻辑回归模型是一种用于二元分类的模型,其预测值是一个介于0和1之间的概率…

都有哪些大厂开始适配鸿蒙原生应用呢

12月8日,随着支付宝宣布启动鸿蒙原生应用开发以来,国内宣布接入鸿蒙原生应用开发的公司越来越多。事实上,自9月华为宣布鸿蒙原生应用全面启动以来,已有金融、旅行、社交等多个领域的企业和开发者陆续宣布加入鸿蒙生态,…

twitter开发如何避坑

此篇介绍在twitter开发过程中遇到的坑(尤其是费用的坑)。 一坑:免费接口少! 刚开始申请免费API使用的时候,twitter官方只会给你三个免费接口使用。 发twitter、删推文、查看用户信息。 这三个接口远远不够开发中使用…

例如,用一个DatabaseRow类型表示一个数据库行(容器),用泛型Column<T>作为它的键

以下是一个简单的示例&#xff0c;演示如何使用泛型的Column<T>作为DatabaseRow的键&#xff0c;表示一个数据库行&#xff08;容器&#xff09;&#xff1a; // 列定义 class Column<T> {private String columnName;private T value;public Column(String column…

将 Github token 添加至远程仓库

将 Github token 添加至远程仓库后便于每次 push 重复输入的麻烦 首先,将已生成的 token 记录(注:生成后的 token 确认后便无法查看只能重新生成)并找到对应的项目 git 本地文件路径下 其次,将其与项目所关联,按如下格式配置即可 token 格式类似于 ghp_CAxxxxxxxxxxxxxxxxxGx5j…

Linux 虚拟机复制后如何彻底修改ip共存

Linux那些事儿 1、复制 2、连接 3、cd /etc/sysconfig/network-scripts/ 4、ls -a 5、vi ifcfg-eth0 6、i 7、修改mac地址和ip地址&#xff0c;记住修改后的mac&#xff08;重要&#xff09; 8、关机 9、打开虚拟机设置此镜像&#xff1a;

Centos系统pnpm升级报错 ERR_PNPM_NO_GLOBAL_BIN_DIR

在 CentOS 系统中使用 pnpm i -g pnpm 报错&#xff1a;ERR_PNPM_NO_GLOBAL_BIN_DIR Unable to find the global bin directory&#xff0c;折腾半天终于解决了。 完整报错信息 [rootVM-8 test]# pnpm i -g pnpm Nothing to stop. No server is running for the store at /roo…

【自动化测试】web3py 连接 goerli

web3py 连接 goerli 直接使用库里方法 if __name__ __main__:from web3.auto.infura.goerli import w3w3.eth.get_balance(get_address_by_private_key(os.getenv("AAA_KEY")))error info: websockets.exceptions.InvalidStatusCode: server rejected WebSocket …

Appium 图像识别技术 OpenCV

在我们做App自动化测试的时候&#xff0c;会发现很多场景下元素没有id、content-desc、text等等属性&#xff0c;并且有可能也会碰到由于开发采用的是自定义View&#xff0c;View中的元素也无法识别到&#xff0c;很多的自动化测试框架对此类场景束手无策。Appium在V1.9.0中有给…

[Linux] Tomcat部署和优化

一、Tomcat相关知识 1.1 Tomcat的简介 Tomcat 是 Java 语言开发的&#xff0c;Tomcat 服务器是一个免费的开放源代码的 Web 应用服务器&#xff0c;是 Apache 软件基金会的 Jakarta 项目中的一个核心项目&#xff0c;由 Apache、Sun 和其他一些公司及个人共同开发而成。 …

Axure动态面板的使用

一. 动态面板 Axure动态面板是Axure RP软件中的一个功能模块&#xff0c;用于创建交互式原型和模拟应用程序的动态效果。它可以模拟用户在应用程序中的操作流程&#xff0c;并展示不同状态之间的变化&#xff0c;提供更真实的用户体验。通过创建不同的状态和添加交互效果&…

Jupyter Notebook的使用

Jupyter Notebook的使用 Jupyter Notebook是Anaconda自带的一款非常不错的代码编辑器&#xff0c;非常适合Python初学者使用&#xff0c;它有如下特点&#xff1a; 可以非常方便地将代码分区块运行&#xff1b; 运行结果可以自动保存&#xff0c;不需要在之后重复运行代码&…

Logistic 回归算法

Logistic 回归 Logistic 回归算法Logistic 回归简述Sigmoid 函数Logistic 回归模型表达式求解参数 $\theta $梯度上升优化算法 Logistic 回归简单实现使用 sklearn 构建 Logistic 回归分类器Logistic 回归算法的优缺点 Logistic 回归算法 Logistic 回归简述 Logistic 回归是一…