逻辑回归代价函数

逻辑回归的代价函数通常使用交叉熵损失来定义。这种损失函数非常适合于二元分类问题。

本篇来推导一下逻辑回归的代价函数。

首先,我们在之前了解了逻辑回归的定义:逻辑回归模型是一种用于二元分类的模型,其预测值是一个介于0和1之间的概率。模型的形式是一个S形的逻辑函数(sigmoid函数),但是sigmoid函数的参数到底要选哪个,就需要对sigmoid函数的结果进行评判,因此也就需要第二步:损失评估。

举个例子:

假设我们有一个逻辑回归模型,用来预测学生是否会通过最终考试。我们有两个特征:学生的出勤率和平均成绩。模型的目标是基于这些特征预测学生是否会通过考试("通过"记为1,"不通过"记为0)。

特征和参数
  • 假设特征向量 x = [ x 1 x 2 ] x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} x=[x1x2],其中 x 1 x_1 x1是学生的出勤率, x 2 x_2 x2是学生的平均成绩。
  • 模型的参数为 θ = [ θ 0 θ 1 θ 2 ] \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix} θ= θ0θ1θ2 ,其中 θ 0 \theta_0 θ0是偏置项, θ 1 \theta_1 θ1 θ 2 \theta_2 θ2分别是与出勤率和平均成绩相关的权重。
计算 h ( x ) h(x) h(x)

模型会计算 h ( x ) h(x) h(x),即给定特征时通过考试的预测概率。这是通过sigmoid函数来完成的:

h θ ( x ) = 1 1 + e − ( θ 0 + θ 1 x 1 + θ 2 x 2 ) h_\theta(x) = \frac{1}{1 + e^{-(\theta_0 + \theta_1 x_1 + \theta_2 x_2)}} hθ(x)=1+e(θ0+θ1x1+θ2x2)1

假设对于一个特定学生,出勤率 x 1 = 0.85 x_1 = 0.85 x1=0.85(85%),平均成绩 x 2 = 75 x_2 = 75 x2=75,而模型参数为 θ 0 = − 4 \theta_0 = -4 θ0=4 θ 1 = 10 \theta_1 = 10 θ1=10 θ 2 = 0.05 \theta_2 = 0.05 θ2=0.05。那么 h ( x ) h(x) h(x)的计算为:

h θ ( x ) = 1 1 + e − ( − 4 + 10 × 0.85 + 0.05 × 75 ) h_\theta(x) = \frac{1}{1 + e^{-(-4 + 10 \times 0.85 + 0.05 \times 75)}} hθ(x)=1+e(4+10×0.85+0.05×75)1

计算这个表达式的值(这需要一些数学运算),假设结果是 h θ ( x ) ≈ 0.76 h_\theta(x) \approx 0.76 hθ(x)0.76。这意味着根据我们的模型,这个学生通过考试的预测概率是 76%。基于这个预测,由于概率大于0.5,我们可以预测这个学生会通过考试。

到这一步为止, θ 0 = − 4 \theta_0 = -4 θ0=4 θ 1 = 10 \theta_1 = 10 θ1=10 θ 2 = 0.05 \theta_2 = 0.05 θ2=0.05实际上是我们随机(或经验)取的一组参数数值,但其并不是最佳的,所以就需要有一个代价函数来判断整体的损失(正确率),再进行梯度下降(或其他优化算法)来迭代地调整这些参数,以获得最小化损失。

在逻辑回归中,由于目标结果只有0和1两种情况,因此去计算一组数据的损失的时候就需要区分成两个函数

当 y=1 时的损失函数

Cost when  y = 1 : − log ⁡ ( h θ ( x ) ) \text{Cost when } y = 1: -\log(h_\theta(x)) Cost when y=1:log(hθ(x))

当 y=0 时的损失函数

Cost when  y = 0 : − log ⁡ ( 1 − h θ ( x ) ) \text{Cost when } y = 0: -\log(1 - h_\theta(x)) Cost when y=0:log(1hθ(x))
对应的图如下:
在这里插入图片描述
用一个式子来同时包含这两个情况就是我们的逻辑回归的代价函数(交叉熵损失):
J ( θ ) = − 1 m ∑ i = 1 m [ y ( i ) log ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[ y^{(i)} \log(h_\theta(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_\theta(x^{(i)})) \right] J(θ)=m1i=1m[y(i)log(hθ(x(i)))+(1y(i))log(1hθ(x(i)))]
我们可以看到这里 l o g ( h θ ( x ( i ) ) ) log(h_\theta(x^{(i)})) log(hθ(x(i)))前面乘以了 y ( i ) y^{(i)} y(i),所以当目标值为0的时候,这部分就变成了0,也就不会影响后面部分的计算,就很简单地实现了两个式子融合。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/248462.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

都有哪些大厂开始适配鸿蒙原生应用呢

12月8日,随着支付宝宣布启动鸿蒙原生应用开发以来,国内宣布接入鸿蒙原生应用开发的公司越来越多。事实上,自9月华为宣布鸿蒙原生应用全面启动以来,已有金融、旅行、社交等多个领域的企业和开发者陆续宣布加入鸿蒙生态,…

twitter开发如何避坑

此篇介绍在twitter开发过程中遇到的坑(尤其是费用的坑)。 一坑:免费接口少! 刚开始申请免费API使用的时候,twitter官方只会给你三个免费接口使用。 发twitter、删推文、查看用户信息。 这三个接口远远不够开发中使用…

例如,用一个DatabaseRow类型表示一个数据库行(容器),用泛型Column<T>作为它的键

以下是一个简单的示例&#xff0c;演示如何使用泛型的Column<T>作为DatabaseRow的键&#xff0c;表示一个数据库行&#xff08;容器&#xff09;&#xff1a; // 列定义 class Column<T> {private String columnName;private T value;public Column(String column…

将 Github token 添加至远程仓库

将 Github token 添加至远程仓库后便于每次 push 重复输入的麻烦 首先,将已生成的 token 记录(注:生成后的 token 确认后便无法查看只能重新生成)并找到对应的项目 git 本地文件路径下 其次,将其与项目所关联,按如下格式配置即可 token 格式类似于 ghp_CAxxxxxxxxxxxxxxxxxGx5j…

Linux 虚拟机复制后如何彻底修改ip共存

Linux那些事儿 1、复制 2、连接 3、cd /etc/sysconfig/network-scripts/ 4、ls -a 5、vi ifcfg-eth0 6、i 7、修改mac地址和ip地址&#xff0c;记住修改后的mac&#xff08;重要&#xff09; 8、关机 9、打开虚拟机设置此镜像&#xff1a;

Centos系统pnpm升级报错 ERR_PNPM_NO_GLOBAL_BIN_DIR

在 CentOS 系统中使用 pnpm i -g pnpm 报错&#xff1a;ERR_PNPM_NO_GLOBAL_BIN_DIR Unable to find the global bin directory&#xff0c;折腾半天终于解决了。 完整报错信息 [rootVM-8 test]# pnpm i -g pnpm Nothing to stop. No server is running for the store at /roo…

【自动化测试】web3py 连接 goerli

web3py 连接 goerli 直接使用库里方法 if __name__ __main__:from web3.auto.infura.goerli import w3w3.eth.get_balance(get_address_by_private_key(os.getenv("AAA_KEY")))error info: websockets.exceptions.InvalidStatusCode: server rejected WebSocket …

Appium 图像识别技术 OpenCV

在我们做App自动化测试的时候&#xff0c;会发现很多场景下元素没有id、content-desc、text等等属性&#xff0c;并且有可能也会碰到由于开发采用的是自定义View&#xff0c;View中的元素也无法识别到&#xff0c;很多的自动化测试框架对此类场景束手无策。Appium在V1.9.0中有给…

[Linux] Tomcat部署和优化

一、Tomcat相关知识 1.1 Tomcat的简介 Tomcat 是 Java 语言开发的&#xff0c;Tomcat 服务器是一个免费的开放源代码的 Web 应用服务器&#xff0c;是 Apache 软件基金会的 Jakarta 项目中的一个核心项目&#xff0c;由 Apache、Sun 和其他一些公司及个人共同开发而成。 …

Axure动态面板的使用

一. 动态面板 Axure动态面板是Axure RP软件中的一个功能模块&#xff0c;用于创建交互式原型和模拟应用程序的动态效果。它可以模拟用户在应用程序中的操作流程&#xff0c;并展示不同状态之间的变化&#xff0c;提供更真实的用户体验。通过创建不同的状态和添加交互效果&…

Jupyter Notebook的使用

Jupyter Notebook的使用 Jupyter Notebook是Anaconda自带的一款非常不错的代码编辑器&#xff0c;非常适合Python初学者使用&#xff0c;它有如下特点&#xff1a; 可以非常方便地将代码分区块运行&#xff1b; 运行结果可以自动保存&#xff0c;不需要在之后重复运行代码&…

Logistic 回归算法

Logistic 回归 Logistic 回归算法Logistic 回归简述Sigmoid 函数Logistic 回归模型表达式求解参数 $\theta $梯度上升优化算法 Logistic 回归简单实现使用 sklearn 构建 Logistic 回归分类器Logistic 回归算法的优缺点 Logistic 回归算法 Logistic 回归简述 Logistic 回归是一…

Gartner发布2024年网络安全预测 :IAM 和数据安全相结合,解决长期存在的挑战

安全和风险管理领导者需要采用可组合的数据安全视图。这项研究预测&#xff0c;将数据安全创新应用于痛点和高级用例将有助于组织将其数据用于几乎任何用例。 主要发现 在所有云服务模型中&#xff0c;数据安全以及身份和访问管理 (IAM) 的责任均由最终客户承担。 由于这两个学…

人工智能与量子计算:开启未知领域的智慧之旅

导言 人工智能与量子计算的结合是科技领域的一场创新盛宴&#xff0c;引领我们进入了探索未知领域的新时代。本文将深入研究人工智能与量子计算的交汇点&#xff0c;探讨其原理、应用以及对计算领域的深远影响。 量子计算的崛起为人工智能领域注入了新的活力&#xff0c;开启了…

网络安全Web学习记录———CTF---Web---SQL注入(GET和POST传参)例题

小白初见&#xff0c;若有问题&#xff0c;希望各位大哥多多指正~ 我的第一道web类CTF题——一起来撸猫o(•ェ•)m-CSDN博客 最开始学习CTF里的web方向时&#xff0c;每次做了题遇到类似的老是忘记之前的解法&#xff0c;所以写点东西记录一下。听大哥的话&#xff0c;就从最…

Linux-----11、压缩打包

# 打包压缩 # 一、压缩工具 # 1、常见的压缩与解压缩工具 压缩工具说明解压缩工具zip兼容类unix与windows&#xff0c;可以压缩多个文件或目录unzipgzip压缩单个文件&#xff0c;压缩率相对低&#xff0c;cpu开销相对低gunzipbzip2压缩单个文件&#xff0c;压缩率相对高&…

【华为数据之道学习笔记】4-1信息架构的四个组件

企业在运作过程中&#xff0c;首先需要管理好人和物等“资源”&#xff0c;然后管理好各类资源之间的联系&#xff0c;即各类业务交易“事件”&#xff0c;再对各类事件的执行效果进行“整体描述和评估”&#xff0c;最终实现组织目标和价值。以一个通用的工业企业运营为例&…

【TES720D-KIT】基于国内某厂商FMQL20S400全国产化ARM开发套件(核心板+底板)

板卡概述 TES720D-KIT是专门针对我司TES720D&#xff08;基于国内某厂商FMQL20S400的全国产化ARM核心板&#xff09;的一套开发套件&#xff0c;它包含1个TES720D核心板&#xff0c;加上一个TES720D-EXT扩展底板。 FMQL20S400是国内某厂商电子研制的全可编程融合芯片&#xf…

从最近爆火的ChatGPT,我看到了电商的下一个形态

爆火的ChatGPT似乎让每个行业有了改造的可能性&#xff0c;电商行业也不例外。 在讨论了很多流量红利消失的话题后&#xff0c;我们看到互联网电商行业不再性感&#xff0c;从淘宝天猫&#xff0c;京东&#xff0c;到拼多多&#xff0c;再到抖音&#xff0c;快手&#xff0c;电…