opencv相机标定

 

当你把摄像机放在一个特定的位置,在它的后面放一个目标图像,或者是把摄像机放到某个物体上,摄像机周围的物体是什么形状,你需要知道这些信息。 当你在计算机上处理图像时,会使用以下三个参数: 1.像素坐标(pixel):像素坐标是相机中每个点的世界坐标(x,y,z)。相机的每个镜头都有自己的世界坐标。 2.内参数(image property):摄像机内部的几何形状。 在这些参数中,您可以使用相机校准来确定每个像素的世界坐标与其内部几何形状之间的关系。如果不知道这些关系,我们将无法对图像进行进一步处理。因此,通常使用相机校准来确定这些关系。

  • 1.像素坐标

    像素坐标是指摄像机中每个镜头的世界坐标。例如,摄像机中有一个镜头,它的世界坐标是(x,y,z)。这是摄像机在空间中的位置。 因此,如果摄像机正在拍摄一个物体,那么物体上的每个点都有自己的世界坐标。当你使用计算机来处理图像时,你需要知道相机中每个像素的世界坐标。 为了确定每个点的世界坐标,我们需要知道这些点在摄像机中的位置以及它们之间的距离。在图像中,如果我们可以确定摄像机的位置,那么就可以使用相机标定来确定相机内部几何形状。 在许多情况下,我们需要知道摄像机与目标物体之间的距离以及它们之间的角度。但是我们也需要知道这些信息是如何在图像中表示的。为了测量距离和角度,我们需要使用图像处理软件来获得相机内部几何形状和像素坐标。 对于某些情况下,我们可以通过图像处理软件直接从计算机中提取这些信息。对于其他情况下,我们可以使用相机标定来确定这些信息。 因此,在本文中,我们将首先讨论如何从计算机上获得像素坐标和相机参数之间的关系。 通过直接从计算机中获取像素坐标和相机参数之间的关系是很简单的。但是为了得到这种关系并将其应用于图像处理软件中,您需要知道相机内部几何形状和像素坐标之间的关系。 如果相机标定是一个非常复杂的过程,那么您需要使用计算机模拟来获得这些信息。通过模拟摄像机内部几何形状和像素坐标之间的关系,您可以使用摄像机标定来确定每个像素坐标点在摄像机中的位置以及它们之间的距离。

  • 2.内参数

    内参数可以用来确定摄像机的内部几何形状(即相机的内部参数)。摄像机内部几何形状是指摄像机内部的图像。对于所有类型的摄像机,在每个镜头上,我们都有一个用于像素坐标和内参数之间关系的方程。 你可能已经注意到了,在前面,我们只提到了像素坐标和内参数。现在我们要说一下这两者之间的关系。 我们要用内参数来确定像素坐标与内参之间的关系。如果你想了解摄像机内参数,请阅读这篇文章: 因此,相机校准是指通过计算两个或多个相机的世界坐标和内参数之间的关系来确定这些关系。首先,我们有一个与当前情况相关的摄像机内参 下面是相机校准示例: 请注意,在本文中,我们将使用来自不同镜头的相同图像作为样本集,这些样本图像都有一个共同的摄像机内参 为了得到这些样本,我们必须进行相机校准。下面是一些方法: 1.将样本图像投影到摄像机内参上。为了获得更好的效果,可以将所有图像都投影到同一个摄像机内参上 2.计算所有镜头之间的世界坐标和内参数

  • 3.标定工具

    在计算机视觉中,标定是非常重要的步骤。它使我们能够确定摄像机和目标之间的关系,以便我们可以进一步处理图像。在大多数情况下,我们可以在没有标定工具的情况下进行摄像机标定。 如果你不知道如何进行摄像机标定,那么你可以选择使用 OpenCV库中提供的工具来完成该过程。 OpenCV是一个开源的计算机视觉库,它使用一系列函数和库来完成特定任务。这些库在许多计算机视觉应用程序中都有使用,包括机器视觉、自动驾驶汽车、虚拟现实、医学图像分析等领域。 OpenCV是一种通用的计算机视觉语言,可以用来对许多不同类型的设备进行精确的图像处理和分析。它可以在任何有 OpenCV语言的计算机上运行,并且可以使用 OpenCV来做其他一些事情。 1.打开 OpenCV库,选择“Open CV for Vision”工具。 2.使用“Image Properties”工具查看图像中的像素坐标和内参数,以及像素坐标与其内部几何形状之间的关系。 3.如果您不确定相机内参数和像素坐标之间的关系,则可以使用“Image Properties”工具来查看相机内参数和像素坐标之间的关系。 4.然后,您可以选择要在计算机上使用图像处理函数、工具或库的其他方式来对图像进行进一步处理。 5.对于这些图像,您可以使用 OpenCV中提供的所有函数来计算相机内参数和像素坐标之间的关系。这些函数是非常强大的,因此您可以轻松地创建自己的标定工具。OpenCV库中提供了许多常用功能,包括: (1)摄像机内部几何形状参数估计:这是一种用于估计摄像机内部几何形状参数的函数。您可以使用该函数来估计摄像机内部几何形状参数并获得关于这些参数的统计数据。 (2)相机标定:这是一个用于计算图像中像素坐标与其内部几何形状之间关系的函数,您可以使用该函数来进行相机标定。 (3)相机标定模板:这是一个用于创建和配置相机标定模板以完成特定任务的函数,例如: 6.最后,您可以将 OpenCV库中提供的其他函数与 OpenCV中提供的其他工具(例如 PnPy Extend)一起使用,以完成特定任务。

  • 4.标定结果

    在 OpenCV中,您可以使用多个图像进行相机标定,从而获得更精确的相机标定结果。如果您对此感兴趣,请阅读 OpenCV中的有关多图像相机标定的示例代码。 注意:该程序并未自动计算内参数,所以您需要手动输入您的内参数值。 下面是 opencv中用来计算相机内参数的代码。在这个示例代码中,我们将使用给定的内参数值计算出像素坐标与世界坐标之间的关系。 最后,我们可以将此关系应用到图像上,以获得更准确的图像。 要获得更准确的图像,我们可以使用 OpenCV中提供的其他工具(如 TensorFlow)来实现该功能。 实际上,您可以使用 OpenCV中提供的其他工具来优化图像。例如,使用 TensorFlow中提供的 Embedded Optimization ()函数可以将图像进行分割,然后使用多个图像进行重建。

以下是常用的OpenCV相机标定代码:


1. 单目相机标定:
```python
import numpy as np
import cv2
# 设置棋盘格的尺寸
chessboard_size = (9, 6)
# 设置棋盘格的物理尺寸
square_size = 0.025
# 获取棋盘格角点的图像坐标和物理坐标
def get_chessboard_corners(images):
objpoints = []
imgpoints = []
objp = np.zeros((chessboard_size[0] * chessboard_size[1], 3), np.float32)
objp[:, :2] = np.mgrid[0:chessboard_size[0], 0:chessboard_size[1]].T.reshape(-1, 2) * square_size
for img in images:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, corners = cv2.findChessboardCorners(gray, chessboard_size, None)
if ret:
objpoints.append(objp)
imgpoints.append(corners)
return objpoints, imgpoints
# 标定相机
def calibrate_camera(images):
objpoints, imgpoints = get_chessboard_corners(images)
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, images[0].shape[:2], None, None)
return ret, mtx, dist, rvecs, tvecs
```
2. 双目相机标定:
```python
import numpy as np
import cv2
# 设置棋盘格的尺寸
chessboard_size = (9, 6)
# 设置棋盘格的物理尺寸
square_size = 0.025
# 获取棋盘格角点的图像坐标和物理坐标
def get_chessboard_corners(images_left, images_right):
objpoints = []
imgpoints_left = []
imgpoints_right = []
objp = np.zeros((chessboard_size[0] * chessboard_size[1], 3), np.float32)
objp[:, :2] = np.mgrid[0:chessboard_size[0], 0:chessboard_size[1]].T.reshape(-1, 2) * square_size
for i in range(len(images_left)):
gray_left = cv2.cvtColor(images_left[i], cv2.COLOR_BGR2GRAY)
gray_right = cv2.cvtColor(images_right[i], cv2.COLOR_BGR2GRAY)
ret_left, corners_left = cv2.findChessboardCorners(gray_left, chessboard_size, None)
ret_right, corners_right = cv2.findChessboardCorners(gray_right, chessboard_size, None)
if ret_left and ret_right:
objpoints.append(objp)
imgpoints_left.append(corners_left)
imgpoints_right.append(corners_right)
return objpoints, imgpoints_left, imgpoints_right
# 标定相机
def calibrate_camera(images_left, images_right):
objpoints, imgpoints_left, imgpoints_right = get_chessboard_corners(images_left, images_right)
ret, mtx_left, dist_left, mtx_right, dist_right, R, T, E, F = cv2.stereoCalibrate(objpoints, imgpoints_left, imgpoints_right, None, None, None, None, images_left[0].shape[:2], flags=cv2.CALIB_FIX_INTRINSIC)
return ret, mtx_left, dist_left, mtx_right, dist_right, R, T, E, F
```

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/22155.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【我的创作纪念日】—— 纪念四年的坚持

这是一篇和技术无关的博客,但对我而言,它承载了不菲的价值 普通且宁静的一天,被一条消息戳中,于是,写一篇分享帖,纪念我这 1460 天的坚持初衷: 前言:对过去的回顾 4 年前的我&#…

2098-DSD-020X 具有集成的DeviceNet通信接口

描述:2098-DSD-020X-DN是艾伦-布拉德利Ultra 3000运动控制系列的一部分。该产品是一种数字伺服驱动器,可在120VAC / 240 VAC、单相、50-60 Hz的输入电源电压和18安培的输入电流下运行。该伺服驱动器提供120 / 240 VAC的输出电压、3相、0-400 Hz的可编程频率范围、10…

深度学习训练营之Densenet网络

深度学习训练营 原文链接环境介绍前言设计理念网络结构实验结果和讨论pytorch实现DenseNet附录 原文链接 🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍦 参考文章:365天深度学习训练营-第J3周:Densenet网络学习&…

【数据分享】1901-2021年1km分辨率逐月平均气温栅格数据(全国/分省/免费获取)

气温数据是我们最常用的气象指标之一,之前我们给大家分享过1950-2022年0.1 x 0.1精度的逐月平均气温栅格数据和逐年平均气温栅格数据(均可查询之前的文章获悉详情)! 本次我们分享的是精度更高的气温栅格数据——1901-2021年1km分…

【C++】类和对象(3)

文章目录 一、初始化列表二、explicit关键字三、static成员四、友元4.1 友元函数4.2 友元类 五、内部类六、匿名对象七、编译器的优化 一、初始化列表 首先我们先回顾一下构造函数,对象的初始化由构造函数来完成,我们可以在构造函数的函数体内对对象的成…

asp.net就业满意度问调查系统

本系统主要有会员(调查者)和管理员,他们具体的功能如下: 会员功能:注册,登录,修改个人信息,调查,查看调查结果及影响,留言,首先是会员注册,注册后…

广域通信网 - HDLC 高级数据链路控制协议

文章目录 1 概述2 HDLC2.1 帧类型2.2 帧结构 3 扩展3.1 网工软考真题 1 概述 #mermaid-svg-JEuFH1qP4tY5jI5p {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-JEuFH1qP4tY5jI5p .error-icon{fill:#552222;}#mermaid-…

python如何连接mysql数据库

python链接mysql数据库要用到pymysql模块中的connect ,connect函数是pymysql模块中 用于连接MySQL数据库的一个函数。 所以连接mysql之前需要先导入pymysql模块。 第一步,mysql模块下载 方法1(使用pip命令安装): 因…

MySQL数据库基础4-内置函数

文章目录 日期函数字符串函数数学函数其他函数 日期函数 函数名称描述current date()当前日期current time()当前时间current timestamp()当前时间戳date(datetime)返回datetime参数的日期部分date add(date, interval d_value type)在date中添加日期或时间,interv…

调用百度API自动生成春联

目录 1、作者介绍2、百度智能春联介绍录2.1 功能介绍2.2 技术特色 3、智能春联API接口介绍3.1 请求参数3.2 返回参数 4. 操作流程5. 代码实现 1、作者介绍 范宇帅,男,西安工程大学电子信息学院,2022级研究生 研究方向:多机器人协…

Windows安装Ubuntu双系统

Windows安装Ubuntu双系统 1.下载Ubuntu 16.04,地址https://releases.ubuntu.com/16.04/ 2.下载Rufus,地址https://rufus.ie/zh/ 3.准备U盘,烧录系统 4.磁盘分区 5.重启,按住shift键 本人电脑是联想小新 Windows11系统&#xff0…

Elasticsearch环境搭建(Windows)

一、介绍 布式、RESTful 风格的搜索和分析。 Elasticsearch 是位于 Elastic Stack 核心的分布式搜索和分析引擎。Logstash 和 Beats 有助于收集、聚合和丰富您的数据并将其存储在 Elasticsearch 中。Kibana 使您能够以交互方式探索、可视化和分享对数据的见解,并管…

Spring Cloud第二季--服务网关Gateway

文章目录 一、Gateway和Zuul的区别二、Gateway的核心概念三、小试牛刀3.1、代码测试3.2、关于Predicate3.3、关于Filter 一、Gateway和Zuul的区别 Spring Cloud Gateway是在Spring生态系统之上构建的API网关服务,基于Spring 5,Spring Boot 2和 Project …

【文献研究】轴辐式航线网络设计—Liner hub-and-spoke shipping network design

学习文献:轴辐式航线网络设计—Liner hub-and-spoke shipping network design 3. 模型建立 轴辐式航线网络设计 三级轴辐式网络:喂给港-二级枢纽港-一级枢纽港 主要考虑的限制条件:多种类型的集装箱船舶、转运时间、多种类型的集装箱 转运操…

Windows 11部署WSL(Windows Subsystem for Linux——适用于Windows的Linux子系统)

文章目录 前言一、Windows 11部署WSL(Windows Subsystem for Linux)1.打开控制面板→程序→启动或关闭 Windows 功能2.勾选 “适用于 Linux 的 Windows 子系统” 和 “虚拟机平台”3.立即重新启动电脑4.按win键或者点击左下角的windows图标打开微软的应用…

使用C++快速上手ProtoBuf (一)

文章目录 课程目标一、初始ProtoBuf1. 序列化概念2.ProtoBuf是什么3.ProtoBuf的使⽤特点 二、安装ProtoBuf三、教学思路四、快速上⼿步骤1:创建.proto文件步骤2:编译contacts.proto⽂件,⽣成C⽂件步骤3:序列化与反序列化的使⽤⼩结…

人员与叉车防撞预警方案

叉车是仓库重吨位运输设备,在工厂、港口、码头、物流企业等有着广泛的使用。然而,叉车事故频繁发生已经引起人们的广泛关注。多数叉车因为前方货物遮挡的视线盲区多,极容易发生事故,例如撞伤人或货架导致货物倒塌伤人,…

Promise面试题

Promise面试题,带你搞懂同步异步执行顺序 前置知识面试题面试题一面试题二面试题三面试题四 分析面试题一分析面试题二分析面试题三分析面试题四分析 前置知识 Promise中的then方法 then:指定用于得到成功value的成功回调和用于得到失败reason的失败回调…

C语言深度解析--数组

目录 一维数组的创建与初始化 一维数组的创建: 一维数组的初始化: 一维数组的使用: 一维数组在内存中的存储: 二维数组的创建与初始化 二维数组的创建: 二维数组的初始化: 二维数组的使用&#xf…

字节跳动开源其云原生数据仓库 ByConity

动手点关注 干货不迷路 ‍ ‍项目简介 ByConity 是字节跳动开源的云原生数据仓库,它采用计算-存储分离的架构,支持多个关键功能特性,如计算存储分离、弹性扩缩容、租户资源隔离和数据读写的强一致性等。通过利用主流的 OLAP 引擎优化&#xf…